精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=x2-2x-8,
(1)若对x>3,不等式f(x)>(m+2)x-m-15恒成立,求实数m的取值范围
(2)记h(x)=-$\frac{1}{2}$f(x)-4,那么当x≥$\frac{1}{2}$时,是否存在区间[m,n](m<n)使得函数在区间[m,n]上的值域恰好为[km,kn]?若存在,请求出区间[m,n];若不存在,请说明理由.

分析 (1)把不等式f(x)>(m+2)x-m-15转化为一元二次不等式恒成立问题,然后列出不等式组,求解即可得实数m的取值范围.
(2)利用配方法求出h(x),进一步得到h(x)在[m,n]上单调递增,然后分类讨论即可得出结论.

解答 解:(1)f(x)=x2-2x-8,x2-2x-8>(m+2)x-m-15,即x2-(m+4)x+7+m>0对x>3恒成立,
则①$\left\{\begin{array}{l}\frac{m+4}{2}≤3\\ 9-3(m+4)+m+7≥0\end{array}\right.$或②△=(m+4)2-4(m+7)≤0
解得①m≤2或 ②-6≤m≤2
综合得m的取值范围为(-∞,2].
(2)$h(x)=-\frac{1}{2}{x^2}+x=-\frac{1}{2}{(x-1)^2}+\frac{1}{2}$,$kn≤h(x)_{max}=\frac{1}{2}n≤\frac{1}{2k}$,又$k≥\frac{1}{2}$,
∴n≤1,∴h(x)在[m,n]上单调递增,$\left\{\begin{array}{l}{h(m)=km}\\{h(n)=kn}\end{array}\right.$,$\left\{\begin{array}{l}{-\frac{1}{2}{m}^{2}+m=km}\\{-\frac{1}{2}{n}^{2}+n=kn}\end{array}\right.$,
m,n是方程-$\frac{1}{2}$x2+(1-k)x=0的两根,
∴x1=0,x2=2-2k.
∴当$\frac{1}{2}≤k<1$时,[m,n]=[0,2-2k],
当k>1时,[m,n]=[2-2k,0],
当k=1时,不存在区间.

点评 本题考查了函数恒成立问题,考查了基本不等式的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知:f(x)=$\left\{{\begin{array}{l}{{2^{x-2}}}\\{lo{g_2}(x-1)}\end{array}}\right.\begin{array}{l}{(x≤2)}\\{(x>2)}\end{array}$,则f(f(5))等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在R上的函数f(x)满足f(x)=$\left\{{\begin{array}{l}{{x^2},x∈[0,1)}\\{x,x∈[-1,0)}\end{array}}$,且f(x+2)=f(x),g(x)=$\frac{1}{x-2}$,则方程f(x)=g(x)在区间[-1,5]上的所有根之和约为下列哪个数(  )
A.4B.6C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若直线y=k(x-2)+4与曲线y=$\sqrt{4-{x^2}}$有两个交点,则k的取值范围是(  )
A.[1,+∞)B.$[{-1,-\frac{3}{4}})$C.$({\frac{3}{4},1}]$D.(-∞,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={-2,-1,0,1,2,3},B={y|y=|x|-3,x∈A},则A∩B=(  )
A.{-2,1,0}B.{-1,0,1,2}C.{-2,-1,0}D.{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设m,n是两条不同的直线,α,β是两个不同的平面,则下列说法正确的是(  )
A.若m∥α,n∥α,则m∥nB.若m∥α,m∥β,则α∥β
C.若m∥n,m∥α,n?α,则n∥αD.若m∥α,α∥β,则m∥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=ax+xeb-x(其中a,b为常数),函数y=f(x)在点(2,2e+2)处的切线的斜率为e-1.
(1)求函数y=f(x)的解析式;
(2)求函数y=f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知m∈R,直线l:mx-(m2+1)y-4m=0和圆C:x2+y2-8x+4y+16=0.
(1)求直线l的斜率k的取值范围;
(2)是否存在直线l和圆C交于M,N两点,且M,N把圆弧分割成1:3的两部分?如果存在,求出该直线l的方程,如不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如果实数x,y满足约束条件$\left\{\begin{array}{l}x+2y-4≥0\\ x-y+2≥0\\ 2x+y-3≤0\end{array}\right.$,则(x+2)2+y2的最小值为8.

查看答案和解析>>

同步练习册答案