精英家教网 > 高中数学 > 题目详情
8.在R上的函数f(x)满足f(x)=$\left\{{\begin{array}{l}{{x^2},x∈[0,1)}\\{x,x∈[-1,0)}\end{array}}$,且f(x+2)=f(x),g(x)=$\frac{1}{x-2}$,则方程f(x)=g(x)在区间[-1,5]上的所有根之和约为下列哪个数(  )
A.4B.6C.8D.10

分析 由f(x+2)=f(x),得到函数是周期为2的周期函数,分别作出函数f(x),g(x)在[-1,5]上的图象,利用图象观察交点的个数和规律,然后进行求解.

解答 解:∵f(x+2)=f(x),∴函数f(x)是周期为2的周期函数,
∵g(x)=$\frac{1}{x-2}$,∴g(x)关于直线x=2对称.
分别作出函数f(x),g(x)在[-1,5]上的图象,
由图象可知两个函数的交点个数为6个,设6个交点的横坐标从小到大为x1,x2,x3,x4
且这4个交点接近点(2,0)对称,
则$\frac{1}{2}$(x1+x4)=2,x1+x4=4,
所以x1+x2+x3+x4=2(x1+x6)=2×4=8,
由图象可知,x1+x4≈4,x2=x3=1,
∴x1+x2+x3+x4≈6,
∴所有根之和约为6
故选B.

点评 本题主要考查函数交点个数和取值的判断,利用数形结合是解决此类问题的基本方法.本题综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.定积分${∫}_{0}^{π}$sin(x+$\frac{π}{3}$)dx=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a>1,函数f(x)=loga(x+1),g(x)=2loga(2x+t),当x∈(-1,1),t∈[4,6]时,存在x,t使得g(x)≤f(x)+4成立,则a的最小值为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:00~10:00间各自的点击量,得如图所示的统计图,根据统计图:
(1)甲、乙两个网站点击量的极差分别是多少?
(2)甲网站点击量在[10,50]间的频率是多少?
(3)甲、乙两个网站哪个更受欢迎?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P是x∈S的必要条件,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设a+b=2,b>0,则当a=-$\frac{2}{3}$时,$\frac{1}{8|a|}$+$\frac{|a|}{b}$取得最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=2,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,则$\overrightarrow{a}$+$\overrightarrow{b}$在$\overrightarrow{a}$上的正射影的为(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x2-2x-8,
(1)若对x>3,不等式f(x)>(m+2)x-m-15恒成立,求实数m的取值范围
(2)记h(x)=-$\frac{1}{2}$f(x)-4,那么当x≥$\frac{1}{2}$时,是否存在区间[m,n](m<n)使得函数在区间[m,n]上的值域恰好为[km,kn]?若存在,请求出区间[m,n];若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列说法正确的个数是(  )
(1)($\frac{16}{81}$)${\;}^{\frac{3}{4}}$+log3$\frac{5}{4}$+log3$\frac{4}{5}$=$\frac{27}{8}$;
(2)幂函数y=f(x)的图象过点(2,$\frac{\sqrt{2}}{2}$),则f(4)=2
(3)已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow{b}$=($\sqrt{3}$,1),则$\overrightarrow{a}$与$\overrightarrow{b}$夹角的大小为30°
(4)已知x>1,则函数y=$\frac{1}{x-1}$+x的最小值为2
(5)3-2,2${\;}^{\frac{1}{3}}$,log${\;}_{\frac{1}{2}}$3三个数中最大的数是2${\;}^{\frac{1}{3}}$
(6)已知a>1,f(x)=a${\;}^{{x}^{2}+2x}$,则-1<x<0 是使f(x)<1成立的充分不必要条件.
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案