精英家教网 > 高中数学 > 题目详情
19.已知a>1,函数f(x)=loga(x+1),g(x)=2loga(2x+t),当x∈(-1,1),t∈[4,6]时,存在x,t使得g(x)≤f(x)+4成立,则a的最小值为(  )
A.4B.3C.2D.1

分析 构造函数F(x)=g(x)-f(x),把f(x)和g(x)代入到F(x),然后利用对数的运算性质化简,转化为关于a的不等式,再运用基本不等式即可.

解答 解:令F(x)=g(x)-f(x),
∵f(x)=loga(x+1),g(x)=2loga(2x+t)(a>1),
∴x∈(-1,1),t∈[4,6)时,F(x)=g(x)-f(x)有最小值是4,
由F(x)=g(x)-f(x)=loga $\frac{(2x+t)^{2}}{x+1}$,x∈(-1,1),t∈[4,6),a>1,
∴令h(x)=$\frac{(2x+t)^{2}}{x+1}$=4(x+1)+4(t-2)+$\frac{(t-2)^{2}}{x+1}$,
∵-1<x<1,4≤t<6,
∴h(x)=4(x+1)+$\frac{(t-2)^{2}}{x+1}$,
+4(t-2)在(-1,0]上单调递减,在[0,1)上单调递增,
∴h(x)min=h(0)=4+(t-2)2+4(t-2)=[(t-2)+2]2=t2
∴F(x)min=logat2=4,
∴a4=t2
∵4≤t<6,
∴a4=t2≥16,
∴a≥2.
故a的最小值为2,
故选:C.

点评 此题考查对数的运算性质,要求学生灵活运用对数运算的性质,熟练运用化归思想解决恒成立问题,易错点在于h(x)=4(x+1)+$\frac{(t-2)^{2}}{x+1}$+4(t-2),该先把最小值解出,再令它等于4,转化为在t∈[4,6)上有解,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数$f(t)=\sqrt{\frac{1-t}{1+t}}$,F(x)=sinx•f(cosx)+cosx•f(sinx)且$π<x<\frac{3π}{2}$.
(Ⅰ)将函数F(x)化简成Asin(ωx+φ)+B(其中A>0,ω>0,φ∈[0,2π))的形式;
(Ⅱ)求函数F(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|x=$\frac{1}{9}$(2n+1),n∈Z},B={x|x=$\frac{4}{9}$n±$\frac{1}{9}$,n∈Z},则集合A,B之间的关系是(  )
A.A⊆BB.B⊆AC.A=BD.A?B

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知:f(x)=$\left\{{\begin{array}{l}{{2^{x-2}}}\\{lo{g_2}(x-1)}\end{array}}\right.\begin{array}{l}{(x≤2)}\\{(x>2)}\end{array}$,则f(f(5))等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在区间[0,2]上任取两个实数a,b,则函数f(x)=x2+ax-$\frac{1}{4}$b2+1在R上没有零点的概率是(  )
A.$\frac{π}{8}$B.$\frac{4-π}{4}$C.$\frac{4-π}{8}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知下面三个命题:
①“若xy=0,则x=0且y=0”的逆否命题;
②“正方形是菱形”的否命题;
③“若m>2,则不等式x2-2x+m>0的解集为R”.
其中真命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知曲线C1的参数方程为$\left\{\begin{array}{l}x=1+cost\\ y=sint\end{array}$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为θ=$\frac{π}{4}$,试求C1与C2交点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在R上的函数f(x)满足f(x)=$\left\{{\begin{array}{l}{{x^2},x∈[0,1)}\\{x,x∈[-1,0)}\end{array}}$,且f(x+2)=f(x),g(x)=$\frac{1}{x-2}$,则方程f(x)=g(x)在区间[-1,5]上的所有根之和约为下列哪个数(  )
A.4B.6C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=ax+xeb-x(其中a,b为常数),函数y=f(x)在点(2,2e+2)处的切线的斜率为e-1.
(1)求函数y=f(x)的解析式;
(2)求函数y=f(x)的单调区间.

查看答案和解析>>

同步练习册答案