精英家教网 > 高中数学 > 题目详情
14.已知命题p:方程x2-2ax-1=0有两个实数根;命题q:函数f(x)=x+$\frac{4}{x}$的最小值为4.给出下列命题:
①p∧q;②p∨q;③p∧¬q;④¬p∨¬q.
则其中真命题的个数为(  )
A.1B.2C.3D.4

分析 先判定命题p,q的真假,再利用复合命题真假的判定方法即可得出.

解答 解:命题p:方程x2-2ax-1=0有两个实数根,?a∈R,可得△≥0,因此是真命题.
命题q:x<0时,函数f(x)=x+$\frac{4}{x}$<0,因此是假命题.
下列命题:①p∧q是假命题;②p∨q是真命题;③p∧¬q是真命题;④¬p∨¬q是真命题.
则其中真命题的个数为3.
故选:C.

点评 本题考查了函数的性质、一元二次方程的实数根与判别式的关系、复合命题真假的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知下面三个命题:
①“若xy=0,则x=0且y=0”的逆否命题;
②“正方形是菱形”的否命题;
③“若m>2,则不等式x2-2x+m>0的解集为R”.
其中真命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若直线y=k(x-2)+4与曲线y=$\sqrt{4-{x^2}}$有两个交点,则k的取值范围是(  )
A.[1,+∞)B.$[{-1,-\frac{3}{4}})$C.$({\frac{3}{4},1}]$D.(-∞,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设m,n是两条不同的直线,α,β是两个不同的平面,则下列说法正确的是(  )
A.若m∥α,n∥α,则m∥nB.若m∥α,m∥β,则α∥β
C.若m∥n,m∥α,n?α,则n∥αD.若m∥α,α∥β,则m∥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=ax+xeb-x(其中a,b为常数),函数y=f(x)在点(2,2e+2)处的切线的斜率为e-1.
(1)求函数y=f(x)的解析式;
(2)求函数y=f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.某单位要在4名员工(含甲、乙两人)中随机选2名到某地出差,则甲、乙两人中,至少有一人被选中的概率是$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知m∈R,直线l:mx-(m2+1)y-4m=0和圆C:x2+y2-8x+4y+16=0.
(1)求直线l的斜率k的取值范围;
(2)是否存在直线l和圆C交于M,N两点,且M,N把圆弧分割成1:3的两部分?如果存在,求出该直线l的方程,如不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.己知函数f(x)=lnx-x+1.则函数f(x)的图象在点x=2处的切线方程x+2y-2ln2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=sin(${\frac{π}{2}$x)-1-logax({0<a<1)至少有5个零点,则实数a的取值范围是(  )
A.(0,$\frac{\sqrt{7}}{7}$)B.($\frac{\sqrt{7}}{7}$,1)C.($\frac{\sqrt{5}}{5}$,1)D.(0,$\frac{\sqrt{5}}{5}$)

查看答案和解析>>

同步练习册答案