精英家教网 > 高中数学 > 题目详情
4.设f0(x)=sinx,f1(x)=f′0(x),f2(x)=f′1(x),…,fn+1(x)=f′n(x),n∈N,试求f2014(x).

分析 求函数的导数,判断fn(x)是周期为4的周期函数,利用函数的周期性进行求解即可.

解答 解:∵f0(x)=sinx,
∴f1(x)=f′0(x)=cosx,
f2(x)=f′1(x)=-sinx,
f3(x)=f′2(x)=-cosx,
f4(x)=f′3(x)=sinx,

…,
fn+4(x)=fn(x),
故fn(x)是周期为4的周期函数,
则f2014(x)=f2(x)=-sinx.

点评 本题主要考查导数的计算,根据条件求出fn(x)是周期为4的周期函数是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.运算如图的程序框图,若输人是=2015,则输出的结果为(  )
A.22015-1B.22016-lC.22015+lD.220,6+l

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.计算:($\frac{1}{3}$)${\;}^{\frac{1}{2}}$+$\sqrt{3}$•($\sqrt{3}$-$\sqrt{2}$)-1-(1$\frac{17}{64}$)${\;}^{\frac{1}{4}}$-($\frac{\root{3}{3}}{3}$)${\;}^{\frac{3}{4}}$-($\frac{1}{3}$)-1=$\sqrt{6}$-$\frac{3\sqrt{2}}{4}$..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知sinα=$\frac{\sqrt{5}}{5}$,sinβ=$\frac{\sqrt{10}}{10}$,且α、β为锐角,求α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若全集U={0,1,2,},集合A={x|mx+1=0},且∁UA={0,1},则实数m=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期为π,且当x∈[0,$\frac{π}{2}$]时,f(x)=sinx,则f(2014π+$\frac{5π}{3}$)的值为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.有一块草地为菱形,在菱形的对角线交点处有一根垂直于草地的旗杆,若该菱形面积为240m2,周长为80m,旗杆高为8m,则旗杆顶端到菱形边的最短距离为(  )
A.6mB.8mC.10mD.12m

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某商场根据甲、乙两种不同品牌的洗衣粉在周一至周五每天的销量绘成下面的茎叶图若两种品牌销量的平均数为$\overline{{x}_{甲}}$与$\overline{{x}_{乙}}$,方差为s${\;}_{甲}^{2}$与s${\;}_{乙}^{2}$,则(  )
A.$\overline{{x}_{甲}}$$<\overline{{x}_{乙}}$,s${\;}_{甲}^{2}$$<{s}_{乙}^{2}$B.$\overline{{x}_{甲}}$$>\overrightarrow{{x}_{乙}}$,s${\;}_{甲}^{2}$$<{s}_{乙}^{2}$
C.$\overline{{x}_{甲}}$$>\overrightarrow{{x}_{乙}}$,s${\;}_{甲}^{2}$>s${\;}_{乙}^{2}$D.$\overline{{x}_{甲}}$$<\overline{{x}_{乙}}$,s${\;}_{甲}^{2}$$>{s}_{乙}^{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A、B、C所对的边分别为a、b、c,若$\frac{a-b}{c-b}$=$\frac{sinC}{sinA+sinB}$.
(1)求角A;
(2)若f(x)=sinx+$\sqrt{3}$cos(x+A),求函数f(x)的单调递增区间.

查看答案和解析>>

同步练习册答案