精英家教网 > 高中数学 > 题目详情
12.已知sinα=$\frac{\sqrt{5}}{5}$,sinβ=$\frac{\sqrt{10}}{10}$,且α、β为锐角,求α+β的值.

分析 利用两角和差的余弦公式,先求cos(α+β)的值,即可得到结论.

解答 解:∵α、β为锐角,
∴0<α<$\frac{π}{2}$,0<β<$\frac{π}{2}$,
∴0<α+β<π,
∵sinα=$\frac{\sqrt{5}}{5}$,sinβ=$\frac{\sqrt{10}}{10}$,
∴cosα=$\frac{2\sqrt{5}}{5}$,cosβ=$\frac{3\sqrt{10}}{10}$,
则cos(α+β)=cosαcosβ-sinαsinβ═$\frac{2\sqrt{5}}{5}$×$\frac{3\sqrt{10}}{10}$-$\frac{\sqrt{5}}{5}$×$\frac{\sqrt{10}}{10}$=$\frac{\sqrt{2}}{2}$,
则α+β=$\frac{π}{4}$.

点评 本题主要考查三角函数值的计算,利用两角和差的正弦公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.由0,1,2,…,9这十个数字组成的无重复数字的四位数中,个位数字与百位数字之差的绝对值等于2,则这样的四位数共有798.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.用0,1,2,3,4,5可以组成多少个无重复数字的比2000大的四位偶数?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知D是△ABC的边BC上(不包括B、C点)的一动点,且满足$\overrightarrow{AD}$=$α\overrightarrow{AB}$+$β\overrightarrow{AC}$,则$\frac{1}{α}$+$\frac{1}{β}$的最小值为(  )
A.3B.5C.6D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为45°,且$\overrightarrow{a}$=(2,-2),|$\overrightarrow{b}$|=1,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=(  )
A.$\sqrt{2}$B.2C.$\sqrt{5}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知tanA=2,求$\frac{2sinA-cosA}{4sinA+5cosA}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设f0(x)=sinx,f1(x)=f′0(x),f2(x)=f′1(x),…,fn+1(x)=f′n(x),n∈N,试求f2014(x).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.某班班会,准备从包括甲、乙两人的七名同学中选派4名学生发言,要求甲、乙两人中至少有1人参加,则甲、乙都被选中且发言时不相邻的概率为$\frac{1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知{an}是等差数列,{bn}是正项等比数列,若a11=b10,则(  )
A.a13+a9=b14b6B.a13+a9=b14+b6C.a13+a9≥b14+b6D.a13+a9≤b14+b6

查看答案和解析>>

同步练习册答案