精英家教网 > 高中数学 > 题目详情

已知函数
(1)当时,求函数的极值;(2)当时,讨论的单调性。

(1)的极小值为,无极大值(2)当时,的单调递增区间是,单调递减区间是;当时,单调递减区间是时,的单调递增区间是,单调递减区间是

解析试题分析:(1)当时,,求导,令,同时讨论的单调性即可.
(2)当时,,故二次不等式的二次项系数为负,故不等式的解集取决于两个根
的大小,分类讨论即可得到的单调区间.
(1)函数的定义域为
时,       
,得
时,;当时,
上单调递减,在上单调递增
的极小值为,无极大值.
(2)………6分
①当时,,故函数在上是减函数;
②当时,
,得;令,得
③当时,
,得;令,得
综上所述,
时,的单调递增区间是,单调递减区间是
时,单调递减区间是
时,的单调递增区间是,单调递减区间是
考点:利用导数研究函数的性质

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,①求函数的单调区间;②求函数的图象在点处的切线方程;
(2)若函数既有极大值,又有极小值,且当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是否存在实数a,使函数f(x)=loga(ax2-x)在区间[2,4]上是增函数?如果存在,求出a的取值范围;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某分公司经销某种品牌产品,每件产品的成本为元,并且每件产品需向总公司交元的管理费,预计当每件产品的售价为元()时,一年的销售量为万件.
(1)求该分公司一年的利润(万元)与每件产品的售价的函数关系式;
(2)当每件产品的售价为多少元时,该分公司一年的利润最大?并求出的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)(2011•广东)设a>0,讨论函数f(x)=lnx+a(1﹣a)x2﹣2(1﹣a)x的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,曲线在点处的切线与直线垂直.
(1)求的值;
(2)若对于任意的恒成立,求的范围;
(3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 ().
(1)若,求函数的极值;
(2)设
① 当时,对任意,都有成立,求的最大值;
② 设的导函数.若存在,使成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为常数.
(1)若函数处的切线与轴平行,求的值;
(2)当时,试比较的大小;
(3)若函数有两个零点,试证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当  时,求函数  的最小值;
(2)当 时,求证:无论取何值,直线均不可能与函数相切;
(3)是否存在实数,对任意的 ,且,有恒成立,若存在求出的取值范围,若不存在,说明理由。

查看答案和解析>>

同步练习册答案