已知函数()
(1)当时,求函数的极值;(2)当时,讨论的单调性。
(1)的极小值为,无极大值(2)当时,的单调递增区间是,单调递减区间是;当时,单调递减区间是;时,的单调递增区间是,单调递减区间是
解析试题分析:(1)当时,,求导,令,同时讨论的单调性即可.
(2)当时,,,故二次不等式的二次项系数为负,故不等式的解集取决于两个根
的大小,分类讨论即可得到的单调区间.
(1)函数的定义域为
当时,
令,得
当时,;当时,
故在上单调递减,在上单调递增
故的极小值为,无极大值.
(2)………6分
①当即时,,故函数在上是减函数;
②当即时,
令,得;令,得;
③当即时,
令,得;令,得;
综上所述,
当时,的单调递增区间是,单调递减区间是;
当时,单调递减区间是;
时,的单调递增区间是,单调递减区间是
考点:利用导数研究函数的性质
科目:高中数学 来源: 题型:解答题
某分公司经销某种品牌产品,每件产品的成本为元,并且每件产品需向总公司交元的管理费,预计当每件产品的售价为元()时,一年的销售量为万件.
(1)求该分公司一年的利润(万元)与每件产品的售价的函数关系式;
(2)当每件产品的售价为多少元时,该分公司一年的利润最大?并求出的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数 ,.
(1)当 时,求函数 的最小值;
(2)当 时,求证:无论取何值,直线均不可能与函数相切;
(3)是否存在实数,对任意的 ,且,有恒成立,若存在求出的取值范围,若不存在,说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com