精英家教网 > 高中数学 > 题目详情

已知函数 ().
(1)若,求函数的极值;
(2)设
① 当时,对任意,都有成立,求的最大值;
② 设的导函数.若存在,使成立,求的取值范围.

(1)极大值是e-1,极小值
(2)①-1-e-1 ②(-1,+∞)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数 
(1) 当时,求函数的单调区间;
(2) 当时,求函数上的最小值和最大值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,函数的导函数,且,其中为自然对数的底数.
(1)求的极值;
(2)若,使得不等式成立,试求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数的极值;(2)当时,讨论的单调性。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求曲线在点处的切线方程;
(2)求函数的单调区间;
(3)设函数.若至少存在一个,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为常数).
(1)函数的图象在点处的切线与函数的图象相切,求实数的值;
(2)若使得成立,求满足上述条件的最大整数
(3)当时,若对于区间内的任意两个不相等的实数,都有
成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求函数的单调区间;
(2)当时,函数图象上的点都在所表示的平面区域内,不等式恒成立,求实数的取值范围.    [来源:学科

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求曲线在点处的切线方程;
(2)求函数的单调区间;
(3)若对任意的都有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数() =,g ()=+
(1)求函数h ()=()-g ()的零点个数,并说明理由;
(2)设数列满足,证明:存在常数M,使得对于任意的,都有≤ .

查看答案和解析>>

同步练习册答案