已知函数,(为常数).
(1)函数的图象在点处的切线与函数的图象相切,求实数的值;
(2)若,,、使得成立,求满足上述条件的最大整数;
(3)当时,若对于区间内的任意两个不相等的实数、,都有
成立,求的取值范围.
(1)或;(2);(3).
解析试题分析:(1)利用导数求出函数在点的切线方程,并将切线方程与函数的方程联立,利用求出的值;(2)将题中问题转化为从而确定最大整数的值;(3)假设,考查函数和的单调性,从而将,得到,于是得到,然后构造函数
,转化为函数在区间为单调递增函数,于是得到在区间上恒成立,利用参变量分离法求出的取值范围.
(1),,,
函数的图象在点处的切线方程为,
直线与函数的图象相切,由,消去得,
则,解得或;
(2)当时,,
,
当时,,在上单调递减,
,,
则,
,故满足条件的最大整数;
(3)不妨设,函数在区间上是增函数,,
函数图象的对称轴为,且,函数在区间上是减函数,
,
等价于,
即,
等价于在区间上是增函数,
等价于在区间上恒成立,
等价于在区间
科目:高中数学 来源: 题型:解答题
某分公司经销某种品牌产品,每件产品的成本为元,并且每件产品需向总公司交元的管理费,预计当每件产品的售价为元()时,一年的销售量为万件.
(1)求该分公司一年的利润(万元)与每件产品的售价的函数关系式;
(2)当每件产品的售价为多少元时,该分公司一年的利润最大?并求出的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=alnx+bx2图象上点P(1,f(1))处的切线方程为2x-y-3=0.
(1)求函数y=f(x)的解析式;
(2)函数g(x)=f(x)+m-ln4,若方程g(x)=0在[,2]上恰有两解,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(2013•浙江)已知a∈R,函数f(x)=2x3﹣3(a+1)x2+6ax
(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)若|a|>1,求f(x)在闭区间[0,|2a|]上的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com