某分公司经销某种品牌产品,每件产品的成本为元,并且每件产品需向总公司交元的管理费,预计当每件产品的售价为元()时,一年的销售量为万件.
(1)求该分公司一年的利润(万元)与每件产品的售价的函数关系式;
(2)当每件产品的售价为多少元时,该分公司一年的利润最大?并求出的最大值.
(1),;(2)当每件产品的售价时,该分公司一年的利润最大,且最大利润万元.
解析试题分析:(1)解实际应用题,关键是正确理解题意,正确列出等量关系或函数关系式.本题中利润每件产品的利润销售量,进而根据已知即可得出该分公司一年的利润与每件产品的售价的函数关系式;(2)根据(1)中确定的函数关系式,由函数的最值与函数的导数的关系,求出该函数的最大值即可.
(1)分公司一年的利润(万元)与售价的函数关系式为
, 6分
(2)
令,得或 (不合题意,舍去) 8分
当时,,单调递增;当时,,单调递减 10分
于是:当每件产品的售价时,该分公司一年的利润最大,且最大利润万元 12分
考点:导数的实际应用.
科目:高中数学 来源: 题型:解答题
已知函数f(x)=x2-(1+2a)x+aln x(a为常数).
(1)当a=-1时,求曲线y=f(x)在x=1处切线的方程;
(2)当a>0时,讨论函数y=f(x)在区间(0,1)上的单调性,并写出相应的单调区间.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(13分)(2011•重庆)设f(x)=x3+ax2+bx+1的导数f′(x)满足f′(1)=2a,f′(2)=﹣b,其中常数a,b∈R.
(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程.
(Ⅱ)设g(x)=f′(x)e﹣x.求函数g(x)的极值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,(为常数).
(1)函数的图象在点处的切线与函数的图象相切,求实数的值;
(2)若,,、使得成立,求满足上述条件的最大整数;
(3)当时,若对于区间内的任意两个不相等的实数、,都有
成立,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com