某分公司经销某种品牌产品,每件产品的成本为
元,并且每件产品需向总公司交
元的管理费,预计当每件产品的售价为
元(
)时,一年的销售量为
万件.
(1)求该分公司一年的利润
(万元)与每件产品的售价
的函数关系式;
(2)当每件产品的售价为多少元时,该分公司一年的利润
最大?并求出
的最大值.
(1)
,
;(2)当每件产品的售价
时,该分公司一年的利润最大,且最大利润
万元.
解析试题分析:(1)解实际应用题,关键是正确理解题意,正确列出等量关系或函数关系式.本题中利润
每件产品的利润
销售量,进而根据已知即可得出该分公司一年的利润
与每件产品的售价
的函数关系式;(2)根据(1)中确定的函数关系式,由函数的最值与函数的导数的关系,求出该函数的最大值即可.
(1)分公司一年的利润
(万元)与售价
的函数关系式为![]()
,
6分
(2)
令
,得
或
(不合题意,舍去) 8分
当
时,
,
单调递增;当
时,
,
单调递减 10分
于是:当每件产品的售价
时,该分公司一年的利润最大,且最大利润
万元 12分
考点:导数的实际应用.
科目:高中数学 来源: 题型:解答题
已知函数f(x)=x2-(1+2a)x+aln x(a为常数).
(1)当a=-1时,求曲线y=f(x)在x=1处切线的方程;
(2)当a>0时,讨论函数y=f(x)在区间(0,1)上的单调性,并写出相应的单调区间.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(13分)(2011•重庆)设f(x)=x3+ax2+bx+1的导数f′(x)满足f′(1)=2a,f′(2)=﹣b,其中常数a,b∈R.
(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程.
(Ⅱ)设g(x)=f′(x)e﹣x.求函数g(x)的极值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
,
(
为常数).
(1)函数
的图象在点
处的切线与函数
的图象相切,求实数
的值;
(2)若
,
,
、
使得
成立,求满足上述条件的最大整数
;
(3)当
时,若对于区间
内的任意两个不相等的实数
、
,都有![]()
成立,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com