精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x2-(1+2a)x+aln x(a为常数).
(1)当a=-1时,求曲线y=f(x)在x=1处切线的方程;
(2)当a>0时,讨论函数y=f(x)在区间(0,1)上的单调性,并写出相应的单调区间.

(1)y=2x.
(2)函数f(x)的单调增区间是,单调减区间是.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

求下列函数的导数:
(1)
(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,当时,有极大值.
(1)求的值;
(2)求函数的极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax-ln x,g(x)=,它们的定义域都是(0,e],其中e是自然对数的底e≈2.7,a∈R.
(1)当a=1时,求函数f(x)的最小值;
(2)当a=1时,求证:f(m)>g(n)+对一切m,n∈(0,e]恒成立;
(3)是否存在实数a,使得f(x)的最小值是3?如果存在,求出a的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是否存在实数a,使函数f(x)=loga(ax2-x)在区间[2,4]上是增函数?如果存在,求出a的取值范围;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=(x-a)(x-b)2,a,b是常数.
(1)若a≠b,求证:函数f(x)存在极大值和极小值;
(2)设(1)中f(x)取得极大值、极小值时自变量的值分别为x1,x2,设点A(x1,f(x1)),B(x2,f(x2)).如果直线AB的斜率为-,求函数f(x)和f′(x)的公共递减区间的长度;
(3)若f(x)≥mxf′(x)对于一切x∈R恒成立,求实数m,a,b满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某分公司经销某种品牌产品,每件产品的成本为元,并且每件产品需向总公司交元的管理费,预计当每件产品的售价为元()时,一年的销售量为万件.
(1)求该分公司一年的利润(万元)与每件产品的售价的函数关系式;
(2)当每件产品的售价为多少元时,该分公司一年的利润最大?并求出的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,曲线在点处的切线与直线垂直.
(1)求的值;
(2)若对于任意的恒成立,求的范围;
(3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=alnx+bx2图象上点P(1,f(1))处的切线方程为2x-y-3=0.
(1)求函数y=f(x)的解析式;
(2)函数g(x)=f(x)+m-ln4,若方程g(x)=0在[,2]上恰有两解,求实数m的取值范围.

查看答案和解析>>

同步练习册答案