精英家教网 > 高中数学 > 题目详情

已知函数f(x)=alnx+bx2图象上点P(1,f(1))处的切线方程为2x-y-3=0.
(1)求函数y=f(x)的解析式;
(2)函数g(x)=f(x)+m-ln4,若方程g(x)=0在[,2]上恰有两解,求实数m的取值范围.

(1)  f(x)=4lnx-x2 ;(2)  2<m≤4-2ln2.

解析试题分析:(1)由切线方程知图像过,求导后,由题可得,分别代函数与导函数表达式,解可得;(2)由(1)得g(x)=4lnx-x2+m-ln4,即方程m=x2-4lnx+ln4,在上恰有两解,令
h(x)=x2-4lnx+ln4,由导函数得在上递减,在(,2)上递增,可得2< h(x)≤4-2ln2,即2<m≤4-2ln2.
解:(1)∵点P(1,f(1))在切线2x-y-3=0上,
∴2-f(1)-3=0,
∴f(1)=-1,故b=-1,   2分
,∴f ′(1)=a+2b=2,∴a=4,
∴f(x)=4lnx-x2.  4分
(2)g(x)=4lnx-x2+m-ln4
由g(x)=0得:m=x2-4lnx+ln4,此方程在上恰有两解,  6分
记h(x)=x2-4lnx+ln4,则
,  8分
由h′(x)=0得:x=
 上,h′(x)<0,h(x)单调递减,
在(,2)上,h′(x)>0,h(x)单调递增,  10分
又h()=+4+2ln2,h()=2-4ln+2ln2=2,
h(2)=4-4ln2+2ln2=4-2ln2,
∵h()≥h(2),∴2<m≤4-2ln2.   13分
考点:导数的几何意义,利用导数求函数的值域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2-(1+2a)x+aln x(a为常数).
(1)当a=-1时,求曲线y=f(x)在x=1处切线的方程;
(2)当a>0时,讨论函数y=f(x)在区间(0,1)上的单调性,并写出相应的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为常数).
(1)函数的图象在点处的切线与函数的图象相切,求实数的值;
(2)若使得成立,求满足上述条件的最大整数
(3)当时,若对于区间内的任意两个不相等的实数,都有
成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最大值;
(2)若,求的取值范围.
(3)证明:  +(n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求曲线在点处的切线方程;
(2)求函数的单调区间;
(3)若对任意的都有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2011•浙江)设函数f(x)=(x﹣a)2lnx,a∈R
(1)若x=e为y=f(x)的极值点,求实数a;
(2)求实数a的取值范围,使得对任意的x∈(0,3e],恒有f(x)≤4e2成立.
注:e为自然对数的底数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在x=1处有极小值-1,
(1)试求的值;  (2)求出的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,设.讨论函数的单调性;
(2)证明当.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若曲线在点处的切线与直线垂直,求的值;
(Ⅱ)求函数的单调区间;
(Ⅲ)设,当时,都有成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案