精英家教网 > 高中数学 > 题目详情

(本题满分12分)已知函数处取得极值-2.
(1)求函数的解析式;
(2)求曲线在点处的切线方程.

(1);(2).

解析试题分析:(1)先对函数求导,在取得极值处导数值为0,则,又极值为,可得,可得关于的方程,解得可知解析式;(2)由(1)可得,在处的切线的斜率为,过切点,由直线方程的点斜式,写出切线方程.
解:(1),                        1分
依题意有,,即 ,             3分
解得,                                       5分
.                                      6分
(2),
,又 ,           9分
故曲线在点处的切线方程为
                                         12分
考点:求函数的极值,求曲线的切线方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数.
(1)当时,求的极值;
(2)若在区间上单调递增,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,①求函数的单调区间;②求函数的图象在点处的切线方程;
(2)若函数既有极大值,又有极小值,且当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,当时,有极大值.
(1)求的值;
(2)求函数的极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,函数
⑴当时,求函数的表达式;
⑵若,函数上的最小值是2 ,求的值;
(3)⑵的条件下,求直线与函数的图象所围成图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax-ln x,g(x)=,它们的定义域都是(0,e],其中e是自然对数的底e≈2.7,a∈R.
(1)当a=1时,求函数f(x)的最小值;
(2)当a=1时,求证:f(m)>g(n)+对一切m,n∈(0,e]恒成立;
(3)是否存在实数a,使得f(x)的最小值是3?如果存在,求出a的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是否存在实数a,使函数f(x)=loga(ax2-x)在区间[2,4]上是增函数?如果存在,求出a的取值范围;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某分公司经销某种品牌产品,每件产品的成本为元,并且每件产品需向总公司交元的管理费,预计当每件产品的售价为元()时,一年的销售量为万件.
(1)求该分公司一年的利润(万元)与每件产品的售价的函数关系式;
(2)当每件产品的售价为多少元时,该分公司一年的利润最大?并求出的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为常数.
(1)若函数处的切线与轴平行,求的值;
(2)当时,试比较的大小;
(3)若函数有两个零点,试证明.

查看答案和解析>>

同步练习册答案