精英家教网 > 高中数学 > 题目详情

已知函数,函数
⑴当时,求函数的表达式;
⑵若,函数上的最小值是2 ,求的值;
(3)⑵的条件下,求直线与函数的图象所围成图形的面积.

⑴当时,函数

(3)

解析试题分析:(1)对x的取值分类讨论,化简绝对值,求出得到导函数相等,代入到中得到即可;
(2)根据基本不等式得到的最小值即可求出
(3)根据(2)知先联立直线与函数解析式求出交点,利用定积分求直线和函数图象围成面积的方法求出即可.
⑴∵,
∴当时,; 当时,
∴当时,; 当时,
∴当时,函数
⑵∵由⑴知当时,,
∴当时, 当且仅当时取等号.
∴函数上的最小值是,∴依题意得
⑶由解得
∴直线与函数的图象所围成图形的面积
=
考点:利用导数研究函数的单调性,基本不等式,利用定积分求封闭图形的面积

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的单调区间和极值;
(2)若对于任意的,都存在,使得,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

记函数fn(x)=a·xn-1(a∈R,n∈N*)的导函数为f′n(x),已知f′3(2)=12.
(1)求a的值;
(2)设函数gn(x)=fn(x)-n2ln x,试问:是否存在正整数n使得函数gn(x)有且只有一个零点?若存在,请求出所有n的值;若不存在,请说明理由;
(3)若实数x0和m(m>0且m≠1)满足,试比较x0与m的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数 
(1) 当时,求函数的单调区间;
(2) 当时,求函数上的最小值和最大值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数R),为其导函数,且有极小值
(1)求的单调递减区间;
(2)若,当时,对于任意x,的值至少有一个是正数,求实数m的取值范围;
(3)若不等式为正整数)对任意正实数恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知函数处取得极值-2.
(1)求函数的解析式;
(2)求曲线在点处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数满足如下条件:当时,,且对任
,都有.
(1)求函数的图象在点处的切线方程;
(2)求当时,函数的解析式;
(3)是否存在,使得等式
成立?若存在就求出),若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,函数的导函数,且,其中为自然对数的底数.
(1)求的极值;
(2)若,使得不等式成立,试求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求函数的单调区间;
(2)当时,函数图象上的点都在所表示的平面区域内,不等式恒成立,求实数的取值范围.    [来源:学科

查看答案和解析>>

同步练习册答案