精英家教网 > 高中数学 > 题目详情

【题目】某校为了解高一年级300名学生对历史、地理学科的选课情况,对学生进行编号,用1,2,,300表示,并用表示第名学生的选课情况,其中根据如图所示的程序框图,下列说法错误的是( )

A. 为选择历史的学生人数;

B. 为选择地理的学生人数;

C. 为至少选择历史、地理一门学科的学生人数;

D. 为选择历史的学生人数与选择地理的学生人数之和

【答案】C

【解析】分析读懂程序框图程序框图,得到分别表示的人数含义,从而可得结果.

详解阅读程序框图可知,第一个条件语句输出的是择历史的学生人数

第二个条件语句输出的是择地理的学生人数

为选择历史的学生人数与选择地理的学生人数之和没有剔除重合部分)

所以,为至少选择历史、地理一门学科的学生人数错误故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校为了加强学生数学核心素养的培养,锻炼学生自主探究学习的能力,他们以教材第97B组第3题的函数为基本素材,研究该函数的相关性质,取得部分研究成果如下:

①同学甲发现:函数是偶函数;

②同学乙发现:对于任意的都有

③同学丙发现:对于任意的,都有

④同学丁发现:对于函数定义域中任意的两个不同实数,总满足.

其中所有正确研究成果的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四面体中,,则四面体体积最大时,它的外接球半径_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知点是圆心为半径为的半圆弧上从点数起的第一个三等分点,点是圆心为半径为的半圆弧的中点,分别是两个半圆的直径,,直线与两个半圆所在的平面均垂直,直线共面.

1)求三棱锥的体积;

2)求直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,左、右焦点分别为,且

与该椭圆有且只有一个公共点.

(1)求椭圆标准方程;

(2)过点的直线与⊙相切,且与椭圆相交于两点,求证:

(3)过点的直线与⊙相切,且与椭圆相交于两点,试探究的数量关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

某菜园要将一批蔬菜用汽车从所在城市甲运至亚运村乙,已知从城市甲到亚运村乙只有两条公路,且运费由菜园承担.

若菜园恰能在约定日期()将蔬菜送到,则亚运村销售商一次性支付给菜园20万元; 若在约定日期前送到,每提前一天销售商将多支付给菜园1万元; 若在约定日期后送到,每迟到一天销售商将少支付给菜园1万元.

为保证蔬菜新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送蔬菜,已知下表内的信息:

统计信息
汽车行
驶路线

不堵车的情况下到达亚运村乙所需 时间 ()

堵车的情况下到达亚运村乙所需时间 ()

堵车的
概率

运费
(万元)

公路1

2

3



公路2

1

4



(:毛利润销售商支付给菜园的费用运费)

(Ⅰ) 记汽车走公路1时菜园获得的毛利润为(单位:万元),的分布列和数学期望

(Ⅱ) 假设你是菜园的决策者,你选择哪条公路运送蔬菜有可能让菜园获得的毛利润更多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)如图所示的某种容器的体积为,它是由圆锥和圆柱两部分连接而成,圆柱与圆锥的底面半径都为.圆锥的高为,母线与底面所成的角为;圆柱的高为已知圆柱底面的造价为,圆柱侧面造价为,圆锥侧面造价为

(1)将圆柱的高表示为底面半径的函数,并求出定义域;

(2)当容器造价最低时,圆柱的底面半径为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某建材商场国庆期间搞促销活动,规定:顾客购物总金额不超过800元,不享受任何折扣;如果顾客购物总金额超过800元,则超过800元部分享受一定的折扣优惠,并按下表折扣分别累计计算:

可以享受折扣优惠金额

折扣率

不超过500元的部分

超过500元的部分

若某顾客在此商场获得的折扣金额为50元,则此人购物实际所付金额为  

A.1500元B.1550元C.1750元D.1800元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:

0

0

5

0

1)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数的解析式;

2)将图象上所有点向左平行移动个单位长度,并把图象上所有点的横坐标缩短为原来的(纵坐标不变),得到的图象.图象的一个对称中心为,求的最小值;

3)在(2)条件下,求上的增区间.

查看答案和解析>>

同步练习册答案