精英家教网 > 高中数学 > 题目详情
18.已知集合A={0,1},B={x|x⊆A},则集合B中的元素个数是4.

分析 根据集合关系进行判断即可.

解答 解:∵B={x|x⊆A},
∴集合B中的元素是集合A的子集,
则A的子集为∅,{0},{1},{0,1},共4个,
故答案为:4

点评 本题主要考查集合元素个数的判断,根据条件得到集合B的元素是集合A的子集是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.sin1200°的值是(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{2}}}{2}$D.-$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在极坐标系中,已知两点A,B的极坐标为A(3,$\frac{π}{3}}$),B(4,$\frac{π}{6}}$),则△OBA(其中O为极点)的面积为(  )
A.12B.6C.$3\sqrt{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知a,b均为正数,且a+b=1,那么$\frac{3}{a}$+$\frac{4}{b}$的最小值是7+4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知直线y=-x+4与圆x2+y2=r2(r>0)交于A,B两点,O为坐标原点,若圆上一点C满足$\overrightarrow{OC}$=$\frac{5}{4}\overrightarrow{OA}$+$\frac{3}{4}\overrightarrow{OB}$,则r=2$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知四棱锥P-ABCD的底面是一个边长为2的正方形,侧棱PD⊥底面ABCD,且PD=AD,E是线段PC的中点
(Ⅰ)求证:PA∥面BDE;
(Ⅱ)求二面角A-BD-E所成的平面角的余弦值大小;
(Ⅲ)若将四棱锥P-ABCD的每个顶点染上一种颜色,并使同一条棱的两端点异色,如果只有5种颜色可供使用,那么不同的染色方法的总是多少.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若sinαcosα>0,cosαtanα<0,则α的终边落在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,在四棱锥P-ABCD中,底面四边形ABCD是菱形,AC∩BD=O,△PAC是边长为2的等边三角形,PB=PD,BD=2$\sqrt{3}$,AP=4AF.
(Ⅰ)求证:PO⊥底面ABCD;
(Ⅱ)求直线CP与平面BDF所成角的大小;
(Ⅲ)求二面角F-BD-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A,B,C的对边分别为a,b,c,已知bcos2$\frac{A}{2}$+acos2$\frac{B}{2}$=$\frac{3}{2}$c.
(Ⅰ)求证:a,c,b成等差数列;
(Ⅱ)若C=$\frac{π}{3}$,△ABC的面积为2$\sqrt{3}$,求c.

查看答案和解析>>

同步练习册答案