精英家教网 > 高中数学 > 题目详情
6.如图,有一块半径为2的半圆形钢板,计划剪裁成等腰梯形ABCD的形状,它的下底AB是⊙O的直径,上底CD的端点在圆周上,则梯形周长的最大值为10.

分析 作DE⊥AB于E,连接BD,根据相似关系求出AE,而CD=AB-2AE,从而求出梯形ABCD的周长y与腰长x间的函数解析式,根据AD>0,AE>0,CD>0,可求出定义域;利用二次函数在给定区间上求出最值的知识可求出函数的最大值.

解答 解:如图,作DE⊥AB于E,连接BD.
因为AB为直径,所以∠ADB=90°.
在Rt△ADB与Rt△AED中,∠ADB=90°=∠AED,∠BAD=∠DAE,
所以Rt△ADB∽Rt△AED.
所以$\frac{AD}{AB}$=$\frac{AE}{AD}$,即AE=$\frac{A{D}^{2}}{AB}$.
又AD=x,AB=4,所以AE=$\frac{{x}^{2}}{4}$.
所以CD=AB-2AE=4-$\frac{{x}^{2}}{2}$,
于是y=AB+BC+CD+AD=4+x+4-$\frac{{x}^{2}}{2}$+x=-$\frac{1}{2}$x2+2x+8
由于AD>0,AE>0,CD>0,所以x>0,$\frac{{x}^{2}}{4}$>0,4-$\frac{{x}^{2}}{2}$>0,
解得0<x<2$\sqrt{2}$,
故所求的函数为y=-$\frac{1}{2}$x2+2x+8(0<x<2)
y=-$\frac{1}{2}$x2+2x+8=-$\frac{1}{2}$(x-2)2+10,
又0<x<2$\sqrt{2}$,所以,当x=2时,y有最大值10.

点评 本题考查利用数学知识解决实际问题.射影定理的应用是解决此题的关键,二次函数在解决实际问题中求解最值的常用的方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.在△ABC中角A,B,C所对的边分别为a,b,c,满足ccosB+(b-2a)cosC=0.且c=2$\sqrt{3}$
(1)求角C的大小;
(2)求△ABC面积最大值,并判断此时△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设a,b,c∈R且a>b,则下列选项中正确的是(  )
A.ac>bcB.a2>b2C.a3>b3D.$\frac{1}{a}>\frac{1}{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知正项等比数列{an}中,a1a5=9,S3=$\frac{21}{4}$,则log2a10的值为(  )
A.8B.8+log23C.9+log23D.7+log23

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设f(x)=ax-4x3,对?x∈[-1,1]总有f(x)≤1,则a的取值范围是{3}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=a(x2+1).若对任意a∈(-4,-2)及x∈[1,3]时,恒有ma-f(x)>a2+lnx成立,则实数m的取值范围为(  )
A.m≤2B.m<2C.m≤-2D.m<-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an},a4=28,且满足$\frac{{a}_{n+1}+{a}_{n}-1}{{a}_{n+1}-{a}_{n}+1}$=n.
(1)求a1,a2,a3的值;
(2)试猜想数列{an}的通项公式,并证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列说法:
①分类变量A与B的随机变量x2越大,说明“A与B有关系”的可信度越大.
②以模型y=cekx去拟合一组数据时,为了求出回归方程,设z=lny,将其变换后得到线性方程z=0.3x+4,则c,k的值分别是e4和0.3.
③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y=a+bx中,b=2,$\overline x=1,\overline y=3$,则a=1.正确的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆E的中心在坐标原点,以坐标轴为对称轴,其右焦点为F(1,0),点A(0,1)在椭圆上,过点A作两条直线,与椭圆E分别交于M,N两点,直线AM,AN的斜率乘积为-1.
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)求证:直线MN过定点,并求定点的坐标.

查看答案和解析>>

同步练习册答案