精英家教网 > 高中数学 > 题目详情
10.解关于x的不等式ax2+(a-2)x-2≥0(a≥0)

分析 根据题意,讨论a=0和a>0时,求出不等式的解集即可.

解答 解:当a=0时,原不等式化为x+1≤0,
解得x≤-1;
当a>0时,原不等式化为$({x-\frac{2}{a}})({x+1})≥0$,
解得$x≥\frac{2}{a}或x≤-1$;
综上所述,a=0时,不等式的解集为{x|x≤1},
a>0时,不等式的解集为$\left\{{x|x≥\frac{2}{a}或x≤-1}\right\}$.

点评 本题考查了含有字母系数的不等式的解法与应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.圆心角为1弧度半径为2的扇形的面积为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设单位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夹角为$\frac{2π}{3}$,$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=-3$\overrightarrow{{e}_{2}}$,则$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为(  )
A.-$\frac{3\sqrt{3}}{2}$B.-$\frac{3}{2}$C.$\frac{3}{2}$D.$\frac{3\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若函数f(x)=x2+2(a-1)x+2在区间(-∞,4]内递减,那么实数a的取值范围为(  )
A.a≤-3B.a≥-3C.a≤5D.a≥3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知x∈[0,π],f(x)=sin(cosx)的最大值为a,最小值为b,g(x)=cos(sinx)的最大 值为c,最小值为d,则(  )
A.b<d<a<cB.d<b<c<aC.b<d<c<aD.d<b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=1-\frac{\sqrt{2}}{2}t\\ y=2+\frac{\sqrt{2}}{2}t\end{array}$(t为参数),以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρsin2θ-4cos θ=0,已知直线l与曲线C相交于A,B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.假设你家订了一盒牛奶,送奶人可能在早上6:30---7:30之间把牛奶送到你家,你离开家去学校的时间在早上7:00-8:00之间,则你在离开家前能得到牛奶的概率是$\frac{7}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.定义:如果函数f(x)在[m,n]上存在x1,x2(m<x1<x2<n)满足f′(x1)=$\frac{f(n)-f(m)}{n-m}$,f′(x2)=$\frac{f(n)-f(m)}{n-m}$,则称函数f(x)是[m,n]上的“双中值函数”.已知函数f(x)=x3-x2+a是[0,a]上“双中值函数”,则实数a的取值范围是(  )
A.($\frac{1}{3}$,$\frac{1}{2}$)B.($\frac{1}{2}$,3)C.($\frac{1}{2}$,1)D.($\frac{1}{3}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,∠C=90°,且CA=CB=3,点M满足$\overrightarrow{BM}$=3$\overrightarrow{AM}$,则$\overrightarrow{CM}$•$\overrightarrow{CA}$=$\frac{27}{2}$.

查看答案和解析>>

同步练习册答案