精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=xlnx,g(x)=-x2+ax-3.
(1)求函数f(x)的图象在点(1,0)处的切线方程;
(2)若对?x∈(0,+∞)有2f(x)≥g(x)恒成立,求实数a的取值范围.

分析 (1)先求导数,计算f′(1),从而求出切线方程即可;
(2)分离参数,转化为函数的最值问题求解.

解答 解:(1)∵f′(x)=1+lnx,
∴f′(1)=1=k,
故切线方程是:y=x-1;
(2)由题意,不等式化为ax≤2xlnx+x2+3,因为x>0,
所以a≤2lnx+x+$\frac{3}{x}$,当x>0时恒成立.
令h(x)=2lnx+x+$\frac{3}{x}$,则h′(x)=$\frac{2}{x}$-$\frac{3}{{x}^{2}}$+1=$\frac{(x+3)(x-1)}{{x}^{2}}$,
当0<x<1时,h′(x)<0,x>1时,h′(x)>0,
所以h(x)在(0,1)上递减,在(1,+∞)上递增.
故h(x)min=h(1)=2ln1+1+3=4.所以a≤4.
故所求a的范围是(-∞,4].

点评 本题主要考查了不等式恒成立问题的解题思路,一般此类问题转化为函数的最值问题来解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,已知AD、BE、CF分别是△ABC三边的高,H是垂心,AD的延长线交△ABC的外接圆于点G.
(Ⅰ)求证:∠CHG=∠ABC;
(Ⅱ)求证:AB•GD=AD•HC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.为了推进身体健康知识宣传,有关单位举行了有关知识有奖问答活动,随机对市民15~65岁的人群抽样n人,回答问题统计结果如图表所示:
组号分组回答
正确
的人数
回答正确
的人数占本
组的频率
频率正确直方图 
第1组[15,25)50.5 
第2组[25,35)a0.9
第3组[35,45)27x
第4组[45,55)90.36
第5组[55,65)30.2
(1)分别求出n,a,x的值;
(2)请用统计方法估计参与该项知识有奖问答活动的n人的平均年龄(保留一位小数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知在四棱锥S-ABCD中,底面ABCD是菱形,且∠BCD=60°,侧面SAB是正三角形,且面SAB⊥面ABCD,F为SD的中点.
(1)证明:SB∥面ACF;
(2)求面SBC与面SAD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+2(a∈R)在x=3时取得极小值.
(Ⅰ) 求a的值;
(Ⅱ) 当x∈[-2,4]时,求f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,AB是⊙O的直径,G为AB延长线上的一点,GCD是⊙O的割线,过点G作AB的垂线,交AC的延长线于点E,交AD的延长线于点F.求证:
(Ⅰ)GB•GA=GE•GF;
(Ⅱ)若AD=GB=OA=1,求GE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=$\frac{1}{3}$x3+ax2-8x-1(a<0).若曲线y=f(x)的切线斜率的最小值是-9.求:
(1)a的值;
(2)函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若$\overrightarrow{a}$=(3,5cosx),$\overrightarrow{b}$=(2sinx,cosx),则$\overrightarrow{a}$•$\overrightarrow{b}$的范围是[-6,$\frac{34}{5}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.平面直角坐标系xOy,直线l的参数方程为$\left\{\begin{array}{l}{x=-\sqrt{3}t}\\{y=\frac{2\sqrt{3}}{3}+t}\end{array}\right.$(t为参数),圆C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数).以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求直线l和圆C的极坐标方程;
(2)设直线l和圆C相交于A,B两点,求弦AB与其所对的劣弧围成的图形的面积.

查看答案和解析>>

同步练习册答案