5£®Æ½ÃæÖ±½Ç×ø±êϵxOy£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-\sqrt{3}t}\\{y=\frac{2\sqrt{3}}{3}+t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬Ô²CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2cos¦È}\\{y=2sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£®ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®
£¨1£©ÇóÖ±ÏßlºÍÔ²CµÄ¼«×ø±ê·½³Ì£»
£¨2£©ÉèÖ±ÏßlºÍÔ²CÏཻÓÚA£¬BÁ½µã£¬ÇóÏÒABÓëÆäËù¶ÔµÄÁÓ»¡Î§³ÉµÄͼÐεÄÃæ»ý£®

·ÖÎö £¨1£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-\sqrt{3}t}\\{y=\frac{2\sqrt{3}}{3}+t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt¿ÉµÃÖ±ÏßlµÄÆÕͨ·½³Ì£®½«x=¦Ñcos¦È£¬y=¦Ñsin¦È´úÈëÉÏʽ¿ÉµÃ¼«×ø±ê·½³Ì£®Ô²CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2cos¦È}\\{y=2sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÀûÓÃcos2¦È+sin2¦È=1¿ÉµÃÖ±½Ç×ø±ê·½³Ì£¬½ø¶øµÃµ½Ô²CµÄ¼«×ø±ê·½³Ì£®
£¨2£©ÁªÁ¢$\left\{\begin{array}{l}{¦Ñ=2}\\{¦Ñcos£¨¦È-\frac{¦Ð}{3}£©=1}\end{array}\right.$£¬½âµÃ£ºA£¬B£®ÔÙÀûÓÃÉÈÐÎÓëÈý½ÇÐεÄÃæ»ý¼ÆË㹫ʽµÃ³ö£®

½â´ð ½â£º£¨1£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-\sqrt{3}t}\\{y=\frac{2\sqrt{3}}{3}+t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýtÖ±ÏßlµÄÆÕͨ·½³ÌΪ$x+\sqrt{3}y$-2=0£®
½«x=¦Ñcos¦È£¬y=¦Ñsin¦È´úÈëÉÏʽ¿ÉµÃ£º¦Ñcos¦È+$\sqrt{3}$¦Ñsin¦È-2=0£®
»¯¼òµÃÖ±ÏßlµÄ·½³ÌΪ$¦Ñcos£¨¦È-\frac{¦Ð}{3}£©$=1£®
Ô²CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2cos¦È}\\{y=2sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬¿ÉµÃÖ±½Ç×ø±ê·½³Ì£ºx2+y2=4£¬¿ÉµÃÔ²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2£®
£¨2£©ÓÉ$\left\{\begin{array}{l}{¦Ñ=2}\\{¦Ñcos£¨¦È-\frac{¦Ð}{3}£©=1}\end{array}\right.$£¬½âÖ®µÃ£ºA£¨2£¬0£©£¬B£¨2£¬$\frac{2¦Ð}{3}$£©£®
¡à¡ÏAOB=$\frac{2¦Ð}{3}$£¬¡àSÉÈÐÎAOB=$\frac{1}{2}¦Á•{r}^{2}$=$\frac{1}{2}¡Á\frac{2¦Ð}{3}¡Á{2}^{2}$=$\frac{4¦Ð}{3}$£®
¡àS¡÷AOB=$\frac{1}{2}$|OA||OB|sin¦Á=$\sqrt{3}$£®
¡àS=SÉÈÐÎAOB-S¡÷AOB=$\frac{4¦Ð}{3}$-$\sqrt{3}$£®

µãÆÀ ±¾Ì⿼²éÁËÖ±½Ç×ø±êÓë¼«×ø±êµÄ»¥»¯¡¢²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢ÇúÏߵĽ»µã¡¢ÉÈÐÎÓëÈý½ÇÐÎÃæ»ý¼ÆË㹫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=xlnx£¬g£¨x£©=-x2+ax-3£®
£¨1£©Çóº¯Êýf£¨x£©µÄͼÏóÔڵ㣨1£¬0£©´¦µÄÇÐÏß·½³Ì£»
£¨2£©Èô¶Ô?x¡Ê£¨0£¬+¡Þ£©ÓÐ2f£¨x£©¡Ýg£¨x£©ºã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑÖªÔ²µÄ¼«×ø±ê·½³ÌΪ¦Ñ=2cos¦È£¬ÒÔ¼«µãΪԭµã£¬¼«ÖáΪxÖáµÄÕý°ëÖᣬ½¨Á¢Æ½ÃæÖ±½Ç×ø±êϵ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=-2\sqrt{2}+t\\ y=1-t\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÔòÔ²Ðĵ½Ö±ÏßlµÄ¾àÀëÊÇ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ£®ÔÚËÄÀâ×¶P-ABCDÖУ¬PA¡ÍÆ½ÃæABCD£¬AD¡ÎBC£¬¡ÏADC=90¡ã£¬ÇÒPA=2£¬AD=CD=$\frac{1}{2}$BC=2$\sqrt{2}$£¬µãMÔÚPDÉÏ£®
£¨I£©ÇóÖ¤£ºAB¡ÍPC£»
£¨¢ò£©Èô¶þÃæ½ÇM-AC-DµÄ´óСΪ$\frac{¦Ð}{4}$£¬ÇóBMÓëÆ½ÃæPACËù³É½ÇµÄÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖª¶àÃæÌåABCDEFGÊÇÓÉÒ»¸öÆ½Ãæ½Ø³¤·½ÌåABCD-A1B1C1D1ËùµÃµÄ¼¸ºÎÌ壬ÈçͼËùʾ£¬ÆäÖÐAB=2BC=2AF=4CG=4£®
£¨1£©ÇóBEµÄ³¤£»
£¨2£©Çó¶þÃæ½ÇA-EF-BµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßC1µÄ¼«×ø±ê·½³ÌΪ¦Ñ2-4¦Ñcos¦È+3=0£¬¦È¡Ê[0£¬2¦Ð]£®
£¨1£©ÇóC1µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÇúÏßC2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=tcos\frac{¦Ð}{6}}\\{y=tsin\frac{¦Ð}{6}}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÇóC1ÓëC2µÄ¹«¹²µãµÄ¼«×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®ÒÑÖªÇúÏßCµÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}{x=\sqrt{3}cos¦Õ}\\{y=sin¦Õ}\end{array}\right.$£¨¦ÕΪ²ÎÊý£©£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñ£¨cos¦È+sin¦È£©=4£®
£¨1£©ÇóÇúÏßCµÄÆÕͨ·½³ÌºÍÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÈôµãPÔÚÇúÏßCÉÏ£¬µãQÔÚÖ±ÏßlÉÏ£¬ÇóÏß¶ÎPQµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖªlµÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}{x=-2+5t}\\{y=1-2t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÔòÖ±ÏßlÓëxÖáµÄ½»µã×ø±êΪ$£¨\frac{1}{2}£¬0£©$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®»´ÄÏÂéѼ×ÊÔ´µÄ¿ª·¢ÓëÀûÓõÄÁ÷³ÌͼÈçͼËùʾ£¬ÔòÓðÈÞ¼Ó¹¤µÄǰһµÀ¹¤ÐòÊÇ£¨¡¡¡¡£©
A£®·õ»¯Ñ¼³ûB£®ÉÌÆ·Ñ¼ËÇÑø
C£®ÉÌÆ·Ñ¼ÊÕ¹º¡¢Óý·Ê¡¢¼Ó¹¤D£®ÓðÈÞ·þ¼Ó¹¤Éú²úÌåϵ

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸