精英家教网 > 高中数学 > 题目详情
11.已知圆的极坐标方程为ρ=2cosθ,以极点为原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程为$\left\{\begin{array}{l}x=-2\sqrt{2}+t\\ y=1-t\end{array}\right.$(t为参数),则圆心到直线l的距离是2.

分析 求出圆C的直角坐标方程和直线l的直角坐标方程,利用点到直线的距离公式能求出圆C的圆心到直线l的距离.

解答 解:∵圆C的极坐标方程为ρ=2cosθ,即ρ2=2ρcosθ,
∴圆C的直角坐标方程为x2+y2-2x=0,
圆心C(1,0),半径r=$\frac{1}{2}$×$\sqrt{4}$=1,
∵直线l的参数方程为$\left\{\begin{array}{l}x=-2\sqrt{2}+t\\ y=1-t\end{array}\right.$(t为参数),
∴直线l的直角坐标方程为x+y+2$\sqrt{2}$-1=0.
∴圆C的圆心到直线l的距离d=$\frac{1+2\sqrt{2}-1}{\sqrt{2}}$=2.
故答案为:2.

点评 本题考查圆心到直线的距离的求法,是基础题,解题时要认真审题,注意点到直线的距离公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.为了推进身体健康知识宣传,有关单位举行了有关知识有奖问答活动,随机对市民15~65岁的人群抽样n人,回答问题统计结果如图表所示:
组号分组回答
正确
的人数
回答正确
的人数占本
组的频率
频率正确直方图 
第1组[15,25)50.5 
第2组[25,35)a0.9
第3组[35,45)27x
第4组[45,55)90.36
第5组[55,65)30.2
(1)分别求出n,a,x的值;
(2)请用统计方法估计参与该项知识有奖问答活动的n人的平均年龄(保留一位小数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=$\frac{1}{3}$x3+ax2-8x-1(a<0).若曲线y=f(x)的切线斜率的最小值是-9.求:
(1)a的值;
(2)函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若$\overrightarrow{a}$=(3,5cosx),$\overrightarrow{b}$=(2sinx,cosx),则$\overrightarrow{a}$•$\overrightarrow{b}$的范围是[-6,$\frac{34}{5}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设集合A={x|x+2<0},B={x|(x+3)(x-1)>0}.
(1)求集合A∩B;
(2)若不等式ax2+2x+b>0的解集为A∪B,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若Sn是数列[an}的前n项的和,且Sn=-n2+6n+7,则数列{an}的最大项的值为12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知定义在R上的函数y=f(x)的导函数为f′(x).若对于任意的x∈R,都有f′(x)>f(x)成立,则满足不等式f(x)>ex-1f(1)的x的取值范围是(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.平面直角坐标系xOy,直线l的参数方程为$\left\{\begin{array}{l}{x=-\sqrt{3}t}\\{y=\frac{2\sqrt{3}}{3}+t}\end{array}\right.$(t为参数),圆C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数).以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求直线l和圆C的极坐标方程;
(2)设直线l和圆C相交于A,B两点,求弦AB与其所对的劣弧围成的图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{{x}^{3}}{3}$-ax.
(1)若x=1是函数f(x)的极值点,求a的值;
(2)若a>0,求函数y=f(x)在区间[0,1]上的最小值.

查看答案和解析>>

同步练习册答案