精英家教网 > 高中数学 > 题目详情
8.已知定义在R上的函数y=f(x)的导函数为f′(x).若对于任意的x∈R,都有f′(x)>f(x)成立,则满足不等式f(x)>ex-1f(1)的x的取值范围是(1,+∞).

分析 构造辅助函数F(x)=$\frac{f(x)}{{e}^{x}}$,求导,由已知条件可知F(x)在定义域R上单调递增,将原不等式转化成$\frac{f(x)}{{e}^{x}}$>$\frac{f(1)}{e}$,根据单调即可求得x的取值范围.

解答 解:设F(x)=$\frac{f(x)}{{e}^{x}}$,
F′(x)=$\frac{f′(x){e}^{x}-{e}^{x}f(x)}{{e}^{2x}}$=$\frac{f′(x)-f(x)}{{e}^{x}}$>0,
∴F(x)在定义域R上单调递增,
将原不等式f(x)>ex-1f(1),
转化成$\frac{f(x)}{{e}^{x}}$>$\frac{f(1)}{e}$,即F(x)>F(1),
∴x>1,
故答案为:(1,+∞).

点评 本题考查导数的运用:求单调性,考查函数的单调性的运用:解不等式,同时考查构造函数,判断单调性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.函数f(x)=mx3+nx在x=$\frac{1}{m}$处有极值,则mn=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知M、m分别是函数f(x)=ax5-bx+sinx+1的最大值、最小值,则M+m=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知圆的极坐标方程为ρ=2cosθ,以极点为原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程为$\left\{\begin{array}{l}x=-2\sqrt{2}+t\\ y=1-t\end{array}\right.$(t为参数),则圆心到直线l的距离是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知四棱锥P-ABCD的底面ABCD是菱形,∠BAD=60°,PA=PD,O为AD边的中点,点M在线段PC上.
(1)证明:平面POB⊥平面PAD;
(2)若AB=2$\sqrt{3}$,PA=$\sqrt{7}$,PB=$\sqrt{13}$,PA∥平面MOB,求四棱锥M-BODC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图.在四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,∠ADC=90°,且PA=2,AD=CD=$\frac{1}{2}$BC=2$\sqrt{2}$,点M在PD上.
(I)求证:AB⊥PC;
(Ⅱ)若二面角M-AC-D的大小为$\frac{π}{4}$,求BM与平面PAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知多面体ABCDEFG是由一个平面截长方体ABCD-A1B1C1D1所得的几何体,如图所示,其中AB=2BC=2AF=4CG=4.
(1)求BE的长;
(2)求二面角A-EF-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C的参数方程为:$\left\{\begin{array}{l}{x=\sqrt{3}cosφ}\\{y=sinφ}\end{array}\right.$(φ为参数),直线l的极坐标方程为ρ(cosθ+sinθ)=4.
(1)求曲线C的普通方程和直线l的直角坐标方程;
(2)若点P在曲线C上,点Q在直线l上,求线段PQ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.
(1)当a=-2时,求不等式f(x)<g(x)的解集;
(2)设a>-1,且当x∈(-$\frac{a}{2}$,$\frac{1}{2}$)时,f(x)≤g(x),求a的取值范围.

查看答案和解析>>

同步练习册答案