精英家教网 > 高中数学 > 题目详情
13.如图.在四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,∠ADC=90°,且PA=2,AD=CD=$\frac{1}{2}$BC=2$\sqrt{2}$,点M在PD上.
(I)求证:AB⊥PC;
(Ⅱ)若二面角M-AC-D的大小为$\frac{π}{4}$,求BM与平面PAC所成角的正弦值.

分析 (Ⅰ)推导出AB⊥AC,AB⊥PA,由此能证明AB⊥PC.
(Ⅱ)以A为原点,AE为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出BM与平面PAC所成角的正弦值.

解答 证明:(Ⅰ)到BC中点E,连结AE,
∵PA⊥平面ABCD,AD∥BC,∠ADC=90°,且PA=2,AD=CD=$\frac{1}{2}$BC=2$\sqrt{2}$,
∴AB=AC=$\sqrt{(2\sqrt{2})^{2}+(2\sqrt{2})^{2}}$=4,
∴AB2+AC2=BC2,∴AB⊥AC,
∵AB?平面ABCD,∴AB⊥PA,
∵AC∩PA=A,∴AB⊥平面PAC,
∵PC?平面PAC,∴AB⊥PC.
解:(Ⅱ)以A为原点,AE为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,
则A(0,0,0),C(2$\sqrt{2}$,2$\sqrt{2}$,0),D(0,2$\sqrt{2}$,0),P(0,0,2),
设M(a,b,c),$\overrightarrow{PM}=λ\overrightarrow{PD}$,即(a,b,c-2)=λ(0,2$\sqrt{2}$,-2)=(0,2$\sqrt{2}λ$,-2λ),
∴a=0,b=2$\sqrt{2}λ$,c=2-2λ,即M(0,2$\sqrt{2}λ$,2-2λ),
$\overrightarrow{AC}$=(2$\sqrt{2}$,2$\sqrt{2}$,0),$\overrightarrow{AM}$=(0,2$\sqrt{2}λ$,2-2λ),
设平面ACM的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AC}=2\sqrt{2}x+2\sqrt{2}y=0}\\{\overrightarrow{n}•\overrightarrow{AM}=2\sqrt{2}λy+(2-2λ)z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,-1,$\frac{\sqrt{2}λ}{1-λ}$),
平面ACD的法向量$\overrightarrow{m}$=(0,0,1),
∵二面角M-AC-D的大小为$\frac{π}{4}$,
∴cos$\frac{π}{4}$=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{\frac{\sqrt{2}λ}{1-λ}}{\sqrt{2+(\frac{\sqrt{2}λ}{1-λ})^{2}}}$,解得$λ=\frac{1}{2}$,
∴M(0,$\sqrt{2}$,1),B(2$\sqrt{2}$,-2$\sqrt{2}$,0),$\overrightarrow{BM}$=(-2$\sqrt{2}$,3$\sqrt{2}$,1),
$\overrightarrow{AP}$=(0,0,2),$\overrightarrow{AC}$(2$\sqrt{2}$,2$\sqrt{2}$,0),
设平面PAC的法向量$\overrightarrow{p}$=(x1,y1,z1),
则$\left\{\begin{array}{l}{\overrightarrow{p}•\overrightarrow{AP}=2{z}_{1}=0}\\{\overrightarrow{p}•\overrightarrow{AC}=2\sqrt{2}{x}_{1}+2\sqrt{2}{y}_{1}=0}\end{array}\right.$,取x1=1,得$\overrightarrow{p}$=(1,-1,0),
设BM与平面PAC所成角为β,
则sinβ=$\frac{|\overrightarrow{BM}•\overrightarrow{p}|}{|\overrightarrow{BM}|•|\overrightarrow{p}|}$=$\frac{5\sqrt{2}}{\sqrt{27}•\sqrt{2}}$=$\frac{5\sqrt{3}}{9}$.
∴BM与平面PAC所成角的正弦值为$\frac{5\sqrt{3}}{9}$.

点评 本题考查异面直线垂直的证明,考查线面角的正弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知在四棱锥S-ABCD中,底面ABCD是菱形,且∠BCD=60°,侧面SAB是正三角形,且面SAB⊥面ABCD,F为SD的中点.
(1)证明:SB∥面ACF;
(2)求面SBC与面SAD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若$\overrightarrow{a}$=(3,5cosx),$\overrightarrow{b}$=(2sinx,cosx),则$\overrightarrow{a}$•$\overrightarrow{b}$的范围是[-6,$\frac{34}{5}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若Sn是数列[an}的前n项的和,且Sn=-n2+6n+7,则数列{an}的最大项的值为12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知定义在R上的函数y=f(x)的导函数为f′(x).若对于任意的x∈R,都有f′(x)>f(x)成立,则满足不等式f(x)>ex-1f(1)的x的取值范围是(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f(x)=|x2-1|+x2+kx在(0,2)上有两个零点,则实数k的取值范围是(1,$\frac{7}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.平面直角坐标系xOy,直线l的参数方程为$\left\{\begin{array}{l}{x=-\sqrt{3}t}\\{y=\frac{2\sqrt{3}}{3}+t}\end{array}\right.$(t为参数),圆C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数).以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求直线l和圆C的极坐标方程;
(2)设直线l和圆C相交于A,B两点,求弦AB与其所对的劣弧围成的图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设f(x)=|2x-1|+|x+1|.
(1)解不等式f(x)≤3;
(2)若不等式m|x|≤f(x)恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=|2x+1|-|x-4|.
(1)解不等式f(x)≥0;
(2)若存在x0∈[-7,7],使得f(x0)+$\frac{1}{2}$m2<4m成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案