精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=|2x+1|-|x-4|.
(1)解不等式f(x)≥0;
(2)若存在x0∈[-7,7],使得f(x0)+$\frac{1}{2}$m2<4m成立,求实数m的取值范围.

分析 (1)利用绝对值的几何意义,化简函数的解析式,然后列出不等式求解即可.
(2)求出函数的值域,转化不等式,得到二次不等式,求解即可.

解答 解:(1)由f(x)=|2x+1|-|x-4|=$\left\{\begin{array}{l}{-x-5,x≤-\frac{1}{2}}\\{3x-3,-\frac{1}{2}<x<4}\\{x+5,x≥4}\end{array}\right.$
f(x)≥0,可得:$\left\{\begin{array}{l}{x≤-\frac{1}{2}}\\{-x-5≥0}\end{array}\right.$或$\left\{\begin{array}{l}{-\frac{1}{2}<x<4}\\{3x-3≥0}\end{array}\right.$或$\left\{\begin{array}{l}{x≥4}\\{x+5≥0}\end{array}\right.$…(2分)
解得:{x|x≤-5或x≥1};…(5分)
(2)当x0∈[-7,7],时,f(x0)∈[-$\frac{9}{2}$,12],…(7分)
由题意f(x0)+$\frac{1}{2}$m2<4m知,-$\frac{9}{2}$<4m-$\frac{1}{2}$m2,即m2-8m-9<0,
解得:-1<m<9…(10分)

点评 本题考查绝对值函数的应用,函数恒成立以及转化思想的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.如图.在四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,∠ADC=90°,且PA=2,AD=CD=$\frac{1}{2}$BC=2$\sqrt{2}$,点M在PD上.
(I)求证:AB⊥PC;
(Ⅱ)若二面角M-AC-D的大小为$\frac{π}{4}$,求BM与平面PAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知l的参数方程$\left\{\begin{array}{l}{x=-2+5t}\\{y=1-2t}\end{array}\right.$(t为参数),则直线l与x轴的交点坐标为$(\frac{1}{2},0)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某小区一住户在楼顶违规私自建了“阳光房”,该小区其他居民对此意见很大,通过物业和城管部门多次上门协调,该住户终于拆除了“阳光房”,对此有人认为既然已经建成再拆除太可惜了,为此业主委员会通过随机询问小区100名性别不同的居民对此件事情的看法,得到如下的2×2列联表
认为应该拆除认为太可惜了总计
451055
301545
总计7525100
附:
P(K2≥k)0.100.050.025
k2.7063.8415.024
K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
参照附表,由此可知下列选项正确的是(  )
A.在犯错误的概率不超过1%的前提下,认为“是否认为拆除太可惜了与性别有关”
B.在犯错误的概率不超过1%的前提下,认为“是否认为拆除太可惜了与性别无关”
C.有90%以上的把握认为“是否认为拆除太可惜了与性别有关”
D.有90%以上的把握认为“是否认为拆除太可惜了与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.
(1)当a=-2时,求不等式f(x)<g(x)的解集;
(2)设a>-1,且当x∈(-$\frac{a}{2}$,$\frac{1}{2}$)时,f(x)≤g(x),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知a>b,c>d,则下列不等式:(1)a+c>b+d;(2)a-c>b-d;(3)ac>bd;(4)$\frac{a}{c}$>$\frac{b}{d}$中恒成立的个数是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.淮南麻鸭资源的开发与利用的流程图如图所示,则羽绒加工的前一道工序是(  )
A.孵化鸭雏B.商品鸭饲养
C.商品鸭收购、育肥、加工D.羽绒服加工生产体系

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.$\underset{lim}{x→\frac{π}{2}}$$\frac{cos2x}{x}$=(  )
A.$\frac{π}{2}$B.-$\frac{π}{2}$C.$\frac{2}{π}$D.-$\frac{2}{π}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线l的参数方程为$\left\{\begin{array}{l}{x=1+\frac{t}{2}}\\{y=t}\end{array}\right.$,曲线C的极坐标方程为ρ=4sinθ,试判断直线l与曲线C的位置关系.

查看答案和解析>>

同步练习册答案