精英家教网 > 高中数学 > 题目详情
12.$\underset{lim}{x→\frac{π}{2}}$$\frac{cos2x}{x}$=(  )
A.$\frac{π}{2}$B.-$\frac{π}{2}$C.$\frac{2}{π}$D.-$\frac{2}{π}$

分析 利用极限的运算法则即可得出.

解答 解:原式=$\frac{\underset{lim}{x→\frac{π}{2}}cos2x}{\underset{lim}{x→\frac{π}{2}}x}$=$\frac{cosπ}{\frac{π}{2}}$=-$\frac{2}{π}$,
故选:D.

点评 本题考查了极限的运算法则,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.设f(x)=|2x-1|+|x+1|.
(1)解不等式f(x)≤3;
(2)若不等式m|x|≤f(x)恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=|2x+1|-|x-4|.
(1)解不等式f(x)≥0;
(2)若存在x0∈[-7,7],使得f(x0)+$\frac{1}{2}$m2<4m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,正方形ABCD所在的平面与三角形CDE所在的平面交于CD,且AE⊥平面CDE.
(1)求证:平面ABCD⊥平面ADE;
(2)已知AB=2AE=2,求三棱锥C-BDE的高h.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=3ln2x-2x,它的两个极值点为x1,x2(x1<x2),给出以下结论:
①1<x1<3<x2;②1<x1<x2<3;③f(x1)>-3;④f(x1)<-$\frac{5}{3}$
则上述结论中所有正确的序号是(  )
A.①③B.②③④C.①④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某几何体的三视图如图所示,则该几何体的体积为$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知在四棱锥P-ABCD中,底面ABCD为菱形且∠ADC=120°,E,F分别是AD,PB的中点且PD=AD.
(1)求证:EF∥平面PCD;
(2)若∠PDA=60°,求证:EF⊥BC;
(3)若PD⊥平面ABCD,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知A、B、C、D为同一平面上的四个点,且满足AB=2,BC=CD=DA=1,∠BAD=θ,△ABD的面积为S,△BCD的面积为T.
(1)当θ=$\frac{π}{3}$时,求T的值;
(2)当S=T时,求cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=alnx+$\frac{1}{2}$x2-(1+a)x.
(1)当a>1时,求函数f(x)的极值;
(2)若f(x)≥0对定义域内的任意x恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案