精英家教网 > 高中数学 > 题目详情
14.已知M、m分别是函数f(x)=ax5-bx+sinx+1的最大值、最小值,则M+m=2.

分析 构造函数g(x)=ax5-bx+sinx,利用奇函数的图象关于原点对称可得出函数最值间的关系,进而得出答案.

解答 解:f(x)=ax5-bx+sinx+1,
令g(x)=ax5-bx+sinx,
∴g(x)为奇函数.
设当x=a时g(x)有最大值g(a),则当x=-a时,g(x)有最小值g(-a)=-g(a)
∵f(x)=1+g(x),
∴当x=a时f(x)有最大值g(a)+1,则当x=-a时,f(x)有最小值-g(a)+1
即M=g(a)+1,m=-g(a)+1,
∴M+m=2
故答案为2

点评 考查了对奇函数性质的应用,难点是通过构造函数,利用奇函数解决问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π),若函数y=f(x)的图象与x轴的任意两个相邻交点间的距离为π,当x=$\frac{π}{3}$时,函数y=f(x)取得最大值2.
(1)求函数f(x)的解析式,并写出它的单调增区间;
(2)若x∈[-$\frac{π}{3}$,$\frac{π}{2}}$],求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+2(a∈R)在x=3时取得极小值.
(Ⅰ) 求a的值;
(Ⅱ) 当x∈[-2,4]时,求f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=$\frac{1}{3}$x3+ax2-8x-1(a<0).若曲线y=f(x)的切线斜率的最小值是-9.求:
(1)a的值;
(2)函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥平面ABC,△ABC为等腰直角三角形,∠BAC=90°且AB=AA1=2,E,F分别是CC1,BC的中点.
(1)求证:EF⊥平面AB1F;
(2)求锐二面角B1-AE-F的余弦值;
(3)若点M是AB上一点,求|FM|+|MB1|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若$\overrightarrow{a}$=(3,5cosx),$\overrightarrow{b}$=(2sinx,cosx),则$\overrightarrow{a}$•$\overrightarrow{b}$的范围是[-6,$\frac{34}{5}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设集合A={x|x+2<0},B={x|(x+3)(x-1)>0}.
(1)求集合A∩B;
(2)若不等式ax2+2x+b>0的解集为A∪B,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知定义在R上的函数y=f(x)的导函数为f′(x).若对于任意的x∈R,都有f′(x)>f(x)成立,则满足不等式f(x)>ex-1f(1)的x的取值范围是(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.证明:数列{$\frac{1}{n(n+1)}$}是递减数列.

查看答案和解析>>

同步练习册答案