分析 (1)由频率分布直方图,能求出该班本次小测验数学成绩的平均分和中位数.
(2)由已知得[70,80)中抽取2人,[80,90)中抽取4人,[90,100)中抽取3人,由此得到X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出X的分布列和数学期望.
解答 解:(1)由频率分布直方图,得:
该班本次小测验数学成绩的平均分:
$\overline{x}$=(55×0.002+65×0.008+75×0.02+85×0.04+95×0.03)×10=83.8.
∵[50,80)的频率为:(0.002+0.008+0.02)×10=0.3,
[80,90)的频率为0.04×10=0.4,
该班本次小测验数学成绩的中位数为:80+$\frac{0.5-0.3}{0.4}×10$=85.
(2)∵数学老师采用分层抽样的方法在70分以上(含70分)的同学中抽取9人组成一个学习小组,
[70,80)的频率为0.02×10=0.2,
[80,90)的频率为0.04×10=0.4,
[90,100)的频率为0.03×10=0.3,
∴[70,80)中抽取2人,[80,90)中抽取4人,[90,100)中抽取3人,
由此得到X的可能取值为0,1,2,3,
P(X=0)=$\frac{{C}_{6}^{3}}{{C}_{9}^{3}}$=$\frac{5}{21}$,
P(X=1)=$\frac{{C}_{6}^{2}{C}_{3}^{1}}{{C}_{9}^{3}}$=$\frac{15}{28}$,
P(X=2)=$\frac{{C}_{6}^{1}{C}_{3}^{2}}{{C}_{9}^{3}}$=$\frac{3}{14}$,
P(X=3)=$\frac{{C}_{3}^{3}}{{C}_{9}^{3}}$=$\frac{1}{84}$,
∴X的分布列为:
| X | 0 | 1 | 2 | 3 |
| P | $\frac{5}{21}$ | $\frac{15}{28}$ | $\frac{3}{14}$ | $\frac{1}{84}$ |
点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望,是中档题,解题时要认真审题,注意排列组合知识的合理运用.
科目:高中数学 来源: 题型:解答题
| 届次 | 第26届(亚特兰大) | 第27届(悉尼) | 第28届(雅典) | 第29届(北京) | 第30届(伦敦) |
| 序号x | 1 | 2 | 3 | 4 | 5 |
| 金牌数y | 16 | 28 | 32 | 51 | 38 |
| 届次 | 第26届(亚特兰大) | 第27届(悉尼) | 第28届(雅典) | 第29届(北京) | 第30届(伦敦) |
| 序号x | 1 | 2 | 3 | 4 | 5 |
| 金牌数y | 16 | 28 | 32 | 51 | 38 |
| 预测值$\stackrel{∧}{y}$ | |||||
| y-$\stackrel{∧}{y}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5x-12y+38=0或3x-4y+10=0 | B. | 12x-5y+4=0或3x-4y+10=0 | ||
| C. | 5x-12y+38=0或x=2 | D. | 3x-4y+10=0或x=2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 从匀速传递的产品生产流水线上,质检员每5分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样 | |
| B. | 已知命题p:?x∈R,使2x>3x;命题q:?x∈(0,+∞),都有${x^{\frac{1}{2}}}<{x^{\frac{1}{3}}}$,则 p∨(¬q)是真命题 | |
| C. | “sinα=$\frac{3}{5}$”是“cos2α=$\frac{7}{25}$”的必要不充分条件 | |
| D. | 命题“若xy=0,则x=0或y=0”的否命题是“若xy≠0,则x≠0或y≠0” |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com