精英家教网 > 高中数学 > 题目详情
6.长为6的线段AB的两端A、B分别在x轴的正半轴、y轴的正半轴上滑动(正半轴包括原点),P为线段AB上的点,且AP:PB=2:1,设∠xAP=α为参数,则点P的轨迹的参数方程是$\left\{\begin{array}{l}{x=-2cosα}\\{y=\frac{4}{3}sinα}\end{array}\right.$(α为参数,90°<α<180°).

分析 设出点P(x,y),用直线AB的倾斜角α表示x、y,得出曲线C的参数方程

解答 解:设P(x,y),由题设知,直线AB的倾斜角为α,
∴x=$\frac{1}{3}$|AB|cos(π-α)=-2cosα,y=$\frac{2}{3}$|AB|sin(π-α)=$\frac{4}{3}$sinα,
∴点P的轨迹的参数方程是$\left\{\begin{array}{l}{x=-2cosα}\\{y=\frac{4}{3}sinα}\end{array}\right.$(α为参数,90°<α<180°).
故答案为:$\left\{\begin{array}{l}{x=-2cosα}\\{y=\frac{4}{3}sinα}\end{array}\right.$(α为参数,90°<α<180°).

点评 本题考查了轨迹方程,考查参数方程,考查学生的逻辑思维能力和计算能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知x>0,y>0,z>0,且xyz=1,求证:x3+y3+z3≥xy+yz+xz.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.从0,1,2,3,4这五个数中任选三个不同的数组成一个三位数,记X为所组成的三位数各位数字之和.
(1)求X是奇数的概率;
(2)求X的概率分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知离散型随机变量X的可能取值为x1=-1,x2=0,x3=1,且E(X)=0.1,D(X)=0.89,则对应x1,x2,x3的概率p1,p2,p3分别为0.4,0.1,0.5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={x|x2-x-2≤0},集合B={x|0<x≤3},则A∩B=(  )
A.(0,1]B.(0,2]C.(2,3)D.[2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={0,1,2,3,4,5},B={-3,-2,-1,0,1,2,3},则图中阴影部分表示的集合为(  )
A.{4,5}B.{4,5,6}C.{x|4≤x≤5}D.{x|4≤x≤6}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某次数学小测验中(满分100分),某班50名学生得分如下面的频率分布直方图所示:
(1)求该班本次小测验数学成绩的平均分和中位数;
(2)已知数学老师采用分层抽样的方法在70分以上(含70分)的同学中抽取9人组成一个学习小组,再从9人中选出3人担任组长,求组长中得分在90分以上(含90分)的人数X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在数列{an}中,a1=a(a∈R),an+1=$\frac{2{{a}_{n}}^{2}}{4{a}_{n}-1}$(n∈N*),记数列{an}的前n项和是Sn
(Ⅰ)若对任意的n∈N*,都有an+1>$\frac{1}{2}$,求实数a的取值范围;
(Ⅱ)若a=1,求证:Sn<$\frac{{n}^{2}}{4}$+1(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知平面向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$,满足|${\overrightarrow a}$|=$\sqrt{2}$,|${\overrightarrow b}$|=1,$\overrightarrow a$•$\overrightarrow b$=-1,且$\overrightarrow a$-$\overrightarrow c$与$\overrightarrow b$-$\overrightarrow c$的夹角为$\frac{π}{4}$,则|${\overrightarrow c}$|的最大值为(  )
A.$\sqrt{5}$B.2$\sqrt{2}$C.$\sqrt{10}$D.4

查看答案和解析>>

同步练习册答案