精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=lg$\frac{1+x}{1-x}$,则“x<$\frac{9}{11}$”是“f(x)<1成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 求解不等式f(x)<1得出lg$\frac{1+x}{1-x}$<1,解得:x>1或x$<\frac{9}{11}$,利用集合的关系,与充分必要条件的定义判断即可.

解答 解:∵函数f(x)=lg$\frac{1+x}{1-x}$,
∴f(x)<1得出lg$\frac{1+x}{1-x}$<1,
解得:x>1或x$<\frac{9}{11}$,
∴根据充分必要条件的定义判断得出:“x<$\frac{9}{11}$”是“f(x)<1成立的充分不必要条件,
故选;A

点评 本题考查了对数函数的性质,不等式的求解,充分必要条件的定义判断,属于中档题,但是难度不大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.(x-1)($\frac{1}{x}$-1)5的展开式中的常数项是6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在复平面上,点P(x,y)所对应的复数p=x+yi(i为虚数单位),z=a+bi(a、b∈R)是某给定复数,复数q=p•z所对应的点为Q(x′,y′),我们称点P经过变换z成为了点Q,记作Q=z(P).
(1)给出z=1+2i,且z(P)=Q(8,1),求点P的坐标;
(2)给出z=3+4i,若P在椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1上运动,Q=z(P),求|OQ|的取值范围;
(3)已知P在双曲线x2-y2=1上运动,试问是否存在z,使得Q=z(P)在双曲线y=$\frac{1}{x}$上运动?若存在,请求出z;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,若|$\overrightarrow{AB}$|=2,|$\overrightarrow{AC}$|=5,$\overrightarrow{AB}$•$\overrightarrow{AC}$=-5,则S△ABC=(  )
A.$\frac{5\sqrt{3}}{2}$B.$\sqrt{3}$C.$\frac{5}{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交抛物线C于A,B两点,则|AB|=12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=|x-a|-|x-2a|(a>0),若对?x∈R,都有f(2x)-1≤f(x),则实数a的最大值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=e-x+a,g(x)=|lnx|,若x1,x2都满足f(x)=g(x),则(  )
A.x1•x2>eB.1<x1•x2<eC.0<x1•x2<e-1D.e-1<x1•x2<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)已知0<x<2,求函数y=x(8-3x)的最大值;
(2)已知x>1,求函数y=$\frac{{x}^{2}-2x+2}{2x-2}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.用描述法表示下列集合:
(1)偶数集;
(2)正奇数集;
(3){1,4,7,10,13};
(4){-2,-4,-6,-8,-10};
(5)方程组$\left\{\begin{array}{l}{x+y=0}\\{3x+2y=2}\end{array}\right.$的解;
(6)函数y=x2+2x的所有函数值;
(7)函数y=x2+2x图象上所有的点.

查看答案和解析>>

同步练习册答案