精英家教网 > 高中数学 > 题目详情
5.(1)已知0<x<2,求函数y=x(8-3x)的最大值;
(2)已知x>1,求函数y=$\frac{{x}^{2}-2x+2}{2x-2}$的最小值.

分析 (1)变形函数y=x(8-3x)=$\frac{1}{3}×3x(8-3x)$,利用基本不等式的性质即可得出;
(2)变形函数y=$\frac{{x}^{2}-2x+2}{2x-2}$=$\frac{1}{2}\frac{(x-1)^{2}+1}{x-1}$=$\frac{1}{2}[(x-1)+\frac{1}{x-1}]$,利用基本不等式的性质即可得出.

解答 解:(1)∵0<x<2,∴函数y=x(8-3x)=$\frac{1}{3}×3x(8-3x)$≤$\frac{1}{3}(\frac{3x+8-3x}{2})^{2}$=$\frac{16}{3}$,
当且仅当x=$\frac{4}{3}$时取等号.∴函数y=x(8-3x)的最大值为$\frac{16}{3}$.
(2)∵x>1,∴函数y=$\frac{{x}^{2}-2x+2}{2x-2}$=$\frac{1}{2}\frac{(x-1)^{2}+1}{x-1}$=$\frac{1}{2}[(x-1)+\frac{1}{x-1}]$$≥\frac{1}{2}×2\sqrt{(x-1)×\frac{1}{x-1}}$=1,
当且仅当x=2时取等号.
∴函数y=$\frac{{x}^{2}-2x+2}{2x-2}$的最小值为1.

点评 本题考查了基本不等式的性质、变形能力,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0$)的离心率是$\frac{\sqrt{2}}{2}$,A1,A2是椭圆E的长轴的两个端点(A2位于A1右侧),B是椭圆在y轴正半轴上的顶点,点F是椭圆E的右焦点,点M是x轴上位于A2右侧的一点,且$\frac{1}{|FM|}$是$\frac{1}{|{A}_{1}M|}$与$\frac{1}{|{A}_{2}M|}$的等差中项,|FM|=1.
(1)求椭圆E的方程以及点M的坐标;
(2)是否存在经过点(0,$\sqrt{2}$)且斜率为k的直线l与椭圆E交于不同的两点P和Q,使得向量$\overrightarrow{OP}$+$\overrightarrow{OQ}$与$\overrightarrow{{A}_{2}B}$共线?若存在,求出直线l的方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=lg$\frac{1+x}{1-x}$,则“x<$\frac{9}{11}$”是“f(x)<1成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{an}是等差数列,Sn是它的前n项和,则数列$\left\{{\frac{S_n}{n}}\right\}$是等差数列.由此类比:数列{bn}是各项为正数的等比数列,Tn是它的前n项积,则数列{$\root{n}{{T}_{n}}$}为等比数列(写出一个正确的结论).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知F1(-1,0),F2(1,0)为平面内的两个定点,动点P满足|PF1|+|PF2|=2$\sqrt{2}$,记点P的轨迹为曲线M.点O为坐标原点,点A、B、C是曲线M上的不同三点,且$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$
(Ⅰ)求直线AB与OC的斜率之积;
(Ⅱ)当直线AB过点F1时,求直线AB、OC与x轴所围成的三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求下列函数的单调区间,并求[1,e]上的最值.
(1)f(x)=lnx-ax;
(2)f(x)=ax2-2lnx3
(3)f(x)=ex-ax-1,求单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在扇形AOB中,OA⊥OB,以OA,OB为直径的半圆交于点C,点P在如图所示图形的阴影区域中(含边界),若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$(x,y∈R),则2x+y的取值范围是(  )
A.[0,$\frac{\sqrt{2}}{2}$]B.[$\frac{\sqrt{2}}{2}$,$\sqrt{2}$]C.[1,$\sqrt{5}$]D.[$\sqrt{5}$,2$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.若函数y=|x-a|lnx在[2,3]上是减函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若直线y=kx+3与直线y=$\frac{1}{k}$x-5的交点在直线y=x上,则k的值为(  )
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.-$\frac{5}{3}$D.$\frac{5}{3}$

查看答案和解析>>

同步练习册答案