分析 (1)变形函数y=x(8-3x)=$\frac{1}{3}×3x(8-3x)$,利用基本不等式的性质即可得出;
(2)变形函数y=$\frac{{x}^{2}-2x+2}{2x-2}$=$\frac{1}{2}\frac{(x-1)^{2}+1}{x-1}$=$\frac{1}{2}[(x-1)+\frac{1}{x-1}]$,利用基本不等式的性质即可得出.
解答 解:(1)∵0<x<2,∴函数y=x(8-3x)=$\frac{1}{3}×3x(8-3x)$≤$\frac{1}{3}(\frac{3x+8-3x}{2})^{2}$=$\frac{16}{3}$,
当且仅当x=$\frac{4}{3}$时取等号.∴函数y=x(8-3x)的最大值为$\frac{16}{3}$.
(2)∵x>1,∴函数y=$\frac{{x}^{2}-2x+2}{2x-2}$=$\frac{1}{2}\frac{(x-1)^{2}+1}{x-1}$=$\frac{1}{2}[(x-1)+\frac{1}{x-1}]$$≥\frac{1}{2}×2\sqrt{(x-1)×\frac{1}{x-1}}$=1,
当且仅当x=2时取等号.
∴函数y=$\frac{{x}^{2}-2x+2}{2x-2}$的最小值为1.
点评 本题考查了基本不等式的性质、变形能力,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,$\frac{\sqrt{2}}{2}$] | B. | [$\frac{\sqrt{2}}{2}$,$\sqrt{2}$] | C. | [1,$\sqrt{5}$] | D. | [$\sqrt{5}$,2$\sqrt{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$ | B. | -$\frac{3}{5}$ | C. | -$\frac{5}{3}$ | D. | $\frac{5}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com