精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=x+$\frac{a}{{e}^{x}}$(e为自然底数).
(1)当a=e时,求函数y=f(x)的极值;
(2)是否存在正数a,使得f(x)>a在定义域内恒成立?若存在,求此满足要求的a;若不存在,请说明理由.

分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最小值即可;
(2)构造F(x)=x+$\frac{a}{{e}^{x}}$-a>0,求出F(x)的导数,解关于导函数的不等式,求出函数的单调区间,判断即可.

解答 解:(1)a=e时,f(x)=x+$\frac{a}{{e}^{x}}$,f′(x)=1-$\frac{e}{{e}^{x}}$,
令f′(x)>0,解得:x>1,令f′(x)<0,解得:x<1,
∴f(x)在(-∞,1)递减,在(1,+∞)递增,
∴f(x)的最小值是f(1)=2;
(2)由f(x)>a,得:F(x)=x+$\frac{a}{{e}^{x}}$-a>0,F′(x)=1-$\frac{a}{{e}^{x}}$,(a>0),
令F′(x)>0,解得:x>lna,令F′(x)<0,解得:x<lna,
∴F(x)在(-∞,lna)递减,在(lna,+∞)递增,
∴F(x)>F(lna)=lna+1-a>0,
令g(a)=lna+1-a,g′(a)=$\frac{1-a}{a}$,
∴g(a)在(0,1)递增,在(1,+∞)递减,而g(1)=0,
∴g(a)≤0,
∴不存在正数a.

点评 本题考查了函数的单调性、最值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若函数f(x)=a+xlnx有两个零点,则实数a的取值范围为(  )
A.[0,$\frac{1}{e}$]B.(0,$\frac{1}{e}$)C.(0,$\frac{1}{e}$]D.(-$\frac{1}{e}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.高三毕业时,甲、乙、丙、丁四位同学站成一排合影留念,则甲乙相邻的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.复数i-1的共轭复数是-1-i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.郑州市的机动车牌照号码自主选号统一由2个英文字母与3个数字组成,若要求2个字母互不相同,这种牌照的号码最多有(  )个.
A.A${\;}_{26}^{2}$103C${\;}_{5}^{2}$B.A${\;}_{26}^{2}$A${\;}_{10}^{3}$
C.(C${\;}_{26}^{1}$)2A${\;}_{10}^{3}$C${\;}_{5}^{2}$D.A${\;}_{26}^{2}$103

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={x|x≤2,x∈Z},B={x|$\frac{1}{x+1}$>0,x∈R},则A∩B=(  )
A.{-1,0,1,2}B.{0,1,2}C.(-1,2]D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=$\frac{\sqrt{lo{g}_{2}x}}{lo{g}_{2}(3-x)}$的定义域为{x|1≤x<3且x≠2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设D=$|\begin{array}{l}{1}&{1}&{1}&{1}\\{2}&{3}&{4}&{5}\\{-2}&{7}&{2}&{3}\\{5}&{4}&{3}&{7}\end{array}|$,则A41+A42+A43+A44=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ex-$\frac{a}{2}$x2ex,其中a∈R,e=2.71828…为自然对数的底数.
(1)讨论函数f(x)在区间(0,+∞)上的单调性;
(2)对于区间(0,1)上任意一个实数a,是否存在x>0,使得f(x)>x+1?若存在,请求出符合条件的一个x,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案