精英家教网 > 高中数学 > 题目详情
10.若函数f(x)=a+xlnx有两个零点,则实数a的取值范围为(  )
A.[0,$\frac{1}{e}$]B.(0,$\frac{1}{e}$)C.(0,$\frac{1}{e}$]D.(-$\frac{1}{e}$,0)

分析 求导f′(x)=lnx+1,从而可得f(x)在(0,$\frac{1}{e}$)上是减函数,在($\frac{1}{e}$,+∞)上是增函数,结合函数在定义域内的极限,可得函数f(x)=a+xlnx有两个零点时,实数a的取值范围.

解答 解:∵函数f(x)=a+xlnx有两个零点,
∴函数f′(x)=lnx+1,
当x∈(0,$\frac{1}{e}$)时,f′(x)<0,函数为减函数;
当x∈($\frac{1}{e}$,+∞)时,f′(x)>0,函数为增函数;
故当x=$\frac{1}{e}$时,函数取最小值a-$\frac{1}{e}$,
又∵$\lim_{x→{0}^{+}}$f(x)=a,$\lim_{x→+∞}$f(x)=+∞;
∴若使函数f(x)有两个零点,
则a>0且a-$\frac{1}{e}$<0,
即a∈(0,$\frac{1}{e}$),
故选:B

点评 本题考查了导数法求函数的最小值,函数的零点,对数函数的图象和性质,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知AB是圆C:(x-1)2+y2=1的直径,点P为直线x-y+3=0上任意一点,则$\overrightarrow{PA}$•$\overrightarrow{PB}$的最小值是(  )
A.2$\sqrt{2}$-1B.1-2$\sqrt{2}$C.7D.-7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=logax-x+2(a>0,且a≠1)有且仅有两个零点的充要条件是(  )
A.0<a<1B.a>1C.1<a<2D.a>2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=exsinx(e是自然对数的底数,e=2.71828…),若?x∈[0,$\frac{π}{2}$],f(x)≥ax,则实数a的取值范围是(  )
A.(-∞,$\frac{1}{4}$]B.(-∞,$\frac{1}{e}$]C.(-∞,$\frac{1}{2}$]D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知数列{an}是由正数组成的等比数列,Sn为其前n项和.已知a2a4=16,S3=7,则S5=(  )
A.15B.17C.31D.33

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.三条平行直线最多能确定的平面个数为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=($\frac{1}{2-a}$)x+1+3(a<2),图象必经过点(-1,4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若不等式ax2+bx-1>0的解集是{x|1<x<2}.
(1)试求a、b的值;
(2)求不等式$\frac{ax+1}{bx-1}$≥0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x+$\frac{a}{{e}^{x}}$(e为自然底数).
(1)当a=e时,求函数y=f(x)的极值;
(2)是否存在正数a,使得f(x)>a在定义域内恒成立?若存在,求此满足要求的a;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案