精英家教网 > 高中数学 > 题目详情

△ABC中,角A,B,C所对的边分别为a,b,c,a=5,b=7,B=60°,则c=________.

8
分析:直接利用余弦定理,求出c的表达式,求出c的值即可.
解答:因为△ABC中,角A,B,C所对的边分别为a,b,c,a=5,b=7,B=60°,
由余弦定理可知b2=a2+c2-2accosB.
所以 49=25+c2-10ccos60°.
c2-5c-24=0
解得c=8或c=-3(舍去).
故答案为:8.
点评:本题既可使用正弦定理解决,也可使用余弦定理解决,使用正弦定理时要让学生考虑如何对所解得的答案进行取舍,使用余弦定理解决后要让学生细心体会方程思想的灵活应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•丰台区一模)在△ABC中,角A,B,C所对的边分别为a,b,c,且asinB-bcosC=ccosB.
(Ⅰ)判断△ABC的形状;
(Ⅱ)若f(x)=
1
2
cos2x-
2
3
cosx+
1
2
,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德州一模)已知函数f(x)=
3
sinxcosx-cos2x+
1
2
(x∈R)

(I)求函数f(x)的最小正周期及在区间[0,
12
]
上的值域;
(Ⅱ)在△ABC中,角A、B、C所对的边分别是a、b、c,又f(
A
2
+
π
3
)=
4
5
,b=2
,面积S△ABC=3,求边长a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•卢湾区一模)在△ABC中,角A,B,C的对边分别为a,b,c,且a=2bcosC,b+c=3a.求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•石景山区一模)在△ABC中,角A,B,C所对应的边分别为a,b,c,且(2a-c)cosB=bcosC.
(Ⅰ)求角B的大小;
(Ⅱ)若A=
π4
,a=2
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,角A、B、C所对的边长分别为a、b、c,向量
m
=(1,cosB),
n
=(sinB,-
3
)
,且
m
n

(1)求角B的大小;
(2)若△ABC面积为
3
3
2
,3ac=25-b2,求a,c的值.

查看答案和解析>>

同步练习册答案