精英家教网 > 高中数学 > 题目详情
20.执行如图所示的程序框图,如果输入的n=32,那么输出的M=(  )
A.66B.65C.64D.63

分析 根据框图的流程模拟运行程序,直到满足条件,跳出循环,计算输出M的值,即可得解.

解答 解:模拟程序的运行,可得
当i=1,M=0,执行循环体,s=32,满足条件s为整数,M=1,
当i=2,不满足条件i>32,执行循环体,s=16,满足条件s为整数,M=3,
当i=4,不满足条件i>32,执行循环体,s=8,满足条件s为整数,M=3+4=7
当i=8,不满足条件i>32,执行循环体,s=4,满足条件s为整数,M=7+8=15
当i=16,不满足条件i>32,执行循环体,s=2,满足条件s为整数,M=15+16=31
当i=32,不满足条件i>32,执行循环体,s=1,满足条件s为整数,M=31+32=63,
故选:D.

点评 本题考查了直到型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.某乐队参加一户外音乐节,准备从3首原创新曲和5首经典歌曲中随机选择4首进行演唱.
(1)求该乐队至少演唱1首原创新曲的概率;
(2)假定演唱一首原创新曲观众与乐队的互动指数为a(a为常数),演唱一首经典歌曲观众与乐队的互动指数为2a,求观众与乐队的互动指数之和X的概率分布及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知双曲线C:$\frac{x^2}{3}-\frac{y^2}{b^2}$=1(b>0)的右焦点为(2,0).
(1)求双曲线C的渐近线方程.
(2)双曲线C的两条渐近线与直线x=1所围成的三角形面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=xlnx,g(x)=-x2+ax-3.
(1)求函数f(x)在[t,t+2](t>0)上的最小值;
(2)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围.
(3)探讨函数F(x)=lnx-$\frac{1}{{e}^{x}}$+$\frac{2}{ex}$是否存在零点?若存在,求出函数F(x)的零点,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.三棱锥A-BCD中,△ABC为等边三角形,AB=2$\sqrt{3}$,∠BDC=90°,二面角A-BC-D的大小为150°,则三棱锥A-BCD的外接球的表面积为(  )
A.B.12πC.16πD.28π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,角A,B,C所对的边分别为a,b,c,且accosB-bccosA=3b2
(1)求$\frac{sinA}{sinB}$的值;
(2)若角C为锐角,c=$\sqrt{11}$,sinC=$\frac{2\sqrt{2}}{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点F1、F2,其离心率e=$\frac{1}{2}$,且点F2到直线$\frac{x}{a}$+$\frac{y}{b}$=1的距离为$\frac{\sqrt{21}}{7}$.
(1)求椭圆E的方程;
(2)设点P(x0,y0)是椭圆E上的一点(x0≥1),过点P作圆(x+1)2+y2=1的两条切线,切线与y轴交于A、B两点,求|AB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,抛物线y2=4x的一条弦AB经过焦点F,取线段OB的中点D,延长OA至点C,使|OA|=|AC|,过点C,D作y轴的垂线,垂足分别为E,G,则|EG|的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=cos(2x-$\frac{π}{3}$)+2cos2x,将函数y=f(x)的图象向右平移$\frac{π}{6}$个单位,得到函数y=g(x)的图象,则函数y=g(x)图象的一个对称中心是(  )
A.(-$\frac{π}{2}$,1)B.(-$\frac{π}{12}$,1)C.($\frac{π}{6}$,1)D.($\frac{π}{4}$,0)

查看答案和解析>>

同步练习册答案