精英家教网 > 高中数学 > 题目详情
11.设F1、F2为椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与双曲线C2的公共的左右焦点,它们在第一象限内交于点M,△MF1F2是以线段MF1为底边的等腰三角形.若双曲线C2的离心率e∈[${\frac{3}{2}$,4],则椭圆C1的离心率取值范围是(  )
A.[${\frac{4}{9}$,$\frac{5}{9}}$]B.[0,$\frac{3}{8}}$]C.[${\frac{3}{8}$,$\frac{4}{9}}$]D.[${\frac{5}{9}$,1)

分析 由题意及椭圆的性质,可求得MF1=2a-2c,根据双曲线的性质求得A点的横坐标,求得$\frac{c}{a}$的取值范围,利用双曲线的离心率取值范围$\frac{3}{2}$≤$\frac{\frac{c}{a}}{1-\frac{2c}{a}}$≤4,椭圆离心率e1=$\frac{c}{a}$,
代入求得椭圆离心率e1的取值范围.

解答 解:∵△MF1F2为等腰三角形,
∴MF2=F1F2=2c,
根据椭圆定义应该有,MF2+MF1=2a=2c+MF1,可推出MF1=2a-2c,
∵双曲线也以F1和F2为焦点,根据其定义也有:MF1-MF2=(2a-2c)-2c=2a-4c,
∴A点横坐标为a-2c,由a-2c>0,得:0<$\frac{c}{a}$<$\frac{1}{2}$;
双曲线离心率e范围:$\frac{3}{2}$≤e=$\frac{丨O{F}_{2}丨}{丨OA丨}$=$\frac{c}{a-2c}$=$\frac{\frac{c}{a}}{1-\frac{2c}{a}}$≤4,①
因此求得椭圆离心率e1=$\frac{c}{a}$,
当0<e1<$\frac{1}{2}$时,解得①:$\frac{3}{8}$≤e1=$\frac{c}{a}$≤$\frac{4}{9}$;
故答案选:C.

点评 本题考查椭圆的离心率的取值范围的求法,解题时要认真审题,注意双曲线、椭圆性质的灵活运用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,椭圆E的方程为$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),点O为坐标原点,点A,B分别是椭圆的右顶点和上顶点,点M在线段AB上,满足BM=2MA,直线OM的斜率为$\frac{1}{4}$.
(1)求椭圆E的离心率e;
(2)设点C的坐标为(0,-b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为$\frac{11}{5}$,求椭圆E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{3}}}{3}$,直线x+y=2与以原点为圆心,以椭圆C的短半轴长为半径的圆相切.
(1)求椭圆C的标准方程;
(2)设椭圆C的左、右焦点分别为F1,F2,直线l1过点F1且与椭圆C的长轴垂直,动直线l2与直线l1垂直,垂足为P,线段PF2的垂直平分线与直线l2交于点M,记M的轨迹为曲线D,设曲线D与x轴交于点Q,不同的两个动点R,S在曲线D上,且满足$\overrightarrow{QR}$•$\overrightarrow{QS}$=5.
(i)求证:直线RS恒过定点;
(ii)当直线RS与x轴正半轴相交时,求△QRS的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0).
(Ⅰ)若点A(1,$\frac{2\sqrt{3}}{3}$),B($\frac{\sqrt{6}}{2}$,1)均在椭圆C上,求椭圆C的标准方程;
(Ⅱ)已知过点(0,1),斜率为k(k<0)的直线l与圆O:x2+y2=$\frac{1}{2}$相切,且与椭圆C交于M,N两点,若以MN为直径的圆恒过原点O,则当a∈[$\frac{\sqrt{42}}{6}$,$\frac{\sqrt{6}}{2}$]时,求椭圆C的离心率e的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若一元二次不等式mx2+(2-m)x-2>0恰有3个整数解,则实数m的取值范围是-$\frac{1}{2}$<m≤-$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.2016年国家已全面放开“二胎”政策,但考虑到经济问题,很多家庭不打算生育二孩,为了解家庭收入与生育二孩的意愿是否有关,现随机抽查了某四线城市50个一孩家庭,它们中有二孩计划的家庭频数分布如下表:
家庭月收入
(单位:元)
2千以下2千~5千5千~8千8千~一万1万~2万2万以上
调查的总人数510151055
有二孩计划的家庭数129734
(Ⅰ)由以上统计数据完成如下2×2列联表,并判断是否有95%的把握认为是否有二孩计划与家庭收入有关?说明你的理由.
收入不高于8千的家庭数收入高于8千的家庭数合计
有二孩计划的家庭数
无二孩计划的家庭数
合计
(Ⅱ)若二孩的性别与一孩性别相反,则称该家庭为“好字”家庭,设每个有二孩计划的家庭为“好字”家庭的概率为$\frac{1}{2}$,且每个家庭是否为“好字”家庭互不影响,设收入在8千~1万的3个有二孩计划家庭中“好字”家庭有X个,求X的分布列及数学期望.
下面的临界值表供参考:
 P(K2≥k) 0.15 0.10 0.05 0.025
 k 2.072 2.706 3.841 5.024
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.关于函数f(x)=5sin3x+5$\sqrt{3}$cos3x,下列说法正确的是(  )
A.函数f(x)关于x=$\frac{5}{9}$π对称
B.函数f(x)向左平移$\frac{π}{18}$个单位后是奇函数
C.函数f(x)关于点($\frac{π}{18}$,0)中心对称
D.函数f(x)在区间[0,$\frac{π}{20}$]上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,已知单位圆x2+y2=1与x轴正半轴交于点P,当圆上一动点Q从P出发沿逆时针方向旋转一周回到P点后停止运动,设OQ扫过的扇形对应的圆心角为x rad,当0<x<2π时,设圆心O到直线PQ的距离为y,y与x的函数关系式y=f(x)是如图所示的程序框图中的①②两个关系式
(Ⅰ)写出程序框图中①②处得函数关系式;
(Ⅱ)若输出的y值为$\frac{1}{2}$,求点Q的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.等比数列{an}中,a4=2,a7=5,则数列{logan}的前10项和等于5.

查看答案和解析>>

同步练习册答案