精英家教网 > 高中数学 > 题目详情
19.已知sinα+cosα=$\frac{\sqrt{5}}{5}$,(α∈(-$\frac{π}{2}$,$\frac{π}{2}$)),则cos2α=$\frac{3}{5}$.

分析 首先将所给式子平方求出2cosαsinα的值,进而结合α的范围得出cosα-sinα>0,然后求出cosα-sinα的值,再利用二倍角的余弦公式求出结果.

解答 (本题满分为12分)
解:∵cosα+sinα=$\frac{\sqrt{5}}{5}$,⇒(cosα+sinα)2=$\frac{1}{5}$,⇒1+2cosαsinα=$\frac{1}{5}$,⇒2cosαsinα=-$\frac{4}{5}$,…(3分)
又∵α∈(-$\frac{π}{2}$,$\frac{π}{2}$),
∴cosα>0,可得:sinα<0,⇒α∈(-$\frac{π}{2}$,0),⇒cosα-sinα>0.        …(6分)
又∵(cosα-sinα)2=1-2sinαcosα=$\frac{9}{5}$,从而有⇒cosα-sinα=$\frac{3\sqrt{5}}{5}$,…(9分)
∴cos2α=cos2α-sin2α=(cosα-sinα)(cosα+sinα)=$\frac{3\sqrt{5}}{5}$×$\frac{\sqrt{5}}{5}$=$\frac{3}{5}$.
故答案为:$\frac{3}{5}$.…(12分)

点评 本题考查了二倍角的余弦,解题过程中要注意根据角的范围判断角的符号,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知P:?x∈(0,+∞),$x+\frac{1}{x}>a$,$q:a<\sqrt{3}$,则P是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.为了缓解二诊备考压力,双流中学高三某6个班级从双流区“棠湖公园”等6个不同的景点中任意选取一个进行春游活动,其中1班、2班不去同一景点且均不去“棠湖公园”的不同的安排方式有多少种(  )
A.$A_5^2{6^4}$B.$C_5^2{6^4}$C.$A_5^2A_4^4$D.$C_5^2A_4^4$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知抛物线y=x2上存在两个不同的点M,N关于直线l:y=-kx+$\frac{9}{2}$对称,求k的取值范围(-∞,-$\frac{1}{4}$)∪($\frac{1}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.解关于x方程sin(4x+$\frac{π}{3}$)-4sin(2x-$\frac{5π}{6}$)+cos(2x+$\frac{π}{6}$)+2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,PD⊥平面ABCD,M是PC的中点,且PD=2
(1)求证:AP∥平面MBD; 
(2)求证:DM⊥BC;
(3)求三棱锥M-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点($\sqrt{2}$,1),离心率为$\frac{\sqrt{2}}{2}$.
(1)若A是椭圆E的上顶点,F1,F2分别是左、右焦点,直线AF1,AF2分别交椭圆于B,C,直线BO交AC于D,求证:S△ABD:S△ABC=3:5;
(2)若A1,A2分别是椭圆E的左、右顶点,动点M满足MA2⊥A1A2,且MA1交椭圆E于点P,求证:$\overrightarrow{OP}$•$\overrightarrow{OM}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.解不等式
(1)(x-a)(ax-1)<0 (a<0)
(2)log${\;}_{\frac{1}{2}}$(x2-1)≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρ2-4ρcos θ+3=0,θ∈[0,2π).
(1)求C1的直角坐标方程;
(2)曲线C2的参数方程为$\left\{\begin{array}{l}{x=tcos\frac{π}{6}}\\{y=tsin\frac{π}{6}}\end{array}\right.$(t为参数).求C1与C2的公共点的极坐标.

查看答案和解析>>

同步练习册答案