分析 (1)连结A1C,推导出A1O⊥AC,BO⊥AC,由此能证明AC⊥平面A1OB.
(2)以O为原点,分别以OB、OC、OA1为x轴,y轴,z轴,建立空间直角坐标系,利用向量法能证明二面角B1-AC-B的余弦值.
解答 证明:(1)连结A1C,∵AC=AA1,∠A1AC=$\frac{π}{3}$,AB=BC,点O为AC的中点,
∴A1O⊥AC,BO⊥AC,
∵A1O∩BO=O,
∴AC⊥平面A1OB.
解:(2)∵侧面A1ACC1⊥底面ABC,∴A1O⊥平面ABC,∴A1O⊥BO,
∴以O为原点,分别以OB、OC、OA1为x轴,y轴,z轴,建立空间直角坐标系,
则A(0,-1,0),B($\sqrt{3}$,0,0),C(0,1,0),A1(0,0,$\sqrt{3}$),B1($\sqrt{3},1,\sqrt{3}$),
∴$\overrightarrow{A{A}_{1}}$=(0,1,$\sqrt{3}$),$\overrightarrow{A{B}_{1}}$=($\sqrt{3},2,\sqrt{3}$),$\overrightarrow{AC}$=(0,2,0),
设平面AB1C的法向量为$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{A{B}_{1}}=\sqrt{3}x+2y+\sqrt{3}z=0}\\{2y=0}\end{array}\right.$,取x=-1,得$\overrightarrow{n}$=(-1,0,1),
又平面ABC的法向量为$\overrightarrow{{A}_{1}O}$=(0,0,$\sqrt{3}$),
∴cos<$\overrightarrow{A{A}_{1}},\overrightarrow{n}$>=$\frac{\overrightarrow{A{A}_{1}}•\overrightarrow{n}}{|\overrightarrow{A{A}_{1}}|•|\overrightarrow{n}|}$=$\frac{\sqrt{3}}{\sqrt{2}•\sqrt{3}}$=$\frac{\sqrt{2}}{2}$,
∴二面角B1-AC-B的余弦值为$\frac{\sqrt{2}}{2}$.
点评 本题考查线面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2π}{5}$ | B. | $\frac{3π}{5}$ | C. | $\frac{4π}{5}$ | D. | π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{9}$ | B. | $\frac{1}{4}$ | C. | $\frac{9}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | b<a<c | B. | b<c<a | C. | a<b<c | D. | c<b<a |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com