精英家教网 > 高中数学 > 题目详情
5.直径为4的圆中,54°圆心角所对弧长是(  )
A.$\frac{2π}{5}$B.$\frac{3π}{5}$C.$\frac{4π}{5}$D.π

分析 由于54°=$\frac{54}{180}π$弧度,再利用弧长公式l=αr即可得出.

解答 解:54°=$\frac{54}{180}π$(弧度)=$\frac{3}{10}$π(弧度).
∴54°的圆心角所对的弧长=$\frac{3}{10}$π×2=$\frac{3}{5}$π.
故选:B.

点评 本题考查了弧长公式l=αr的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.在直角坐标系xOy中,已知⊙O的方程x2+y2=4,直线l:x=4,在以O为极点,x轴的正半轴为极轴的极坐标系中,过极点作射线交⊙O于A,交直线l于B.
(1)写出⊙O及直线l的极坐标方程;
(2)设AB中点为M,求动点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=(2-a)(x-1)-2lnx,(a∈R).
(Ⅰ)当a=1时,求f(x)的单调区间;
(Ⅱ)若函数f(x)在(0,$\frac{1}{3}$)上无零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在各棱长均为2的三棱柱ABC-A1B1C1中,侧面A1ACC1⊥底面ABC,且∠A1AC=$\frac{π}{3}$,点O为AC的中点.
(1)求证:AC⊥平面A1OB;
(2)求二面角B1-AC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.函数y=$\sqrt{k{x}^{2}+4x+k+1}$定义域为R,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.对于集合A,B,如果映射f:A→B满足f(a)+f(b)=f(c).则把此映射称为“引射”,若A={a,b,c},B={1,0,-1},则f:A→B构成的所有映射中“引导映射”的概率$\frac{7}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设变量x,y满足约束条件$\left\{\begin{array}{l}{y≤4}\\{x+y≥4}\\{x-y≤-2}\end{array}\right.$,则目标函数z=x-2y的最小值为-8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设f(x)的定义域为D,若f(x)满足下面两个条件,则称f(x)为闭函数:①f(x)在D上是单调函数;②存在[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b].现已知f(x)=$\sqrt{2x+1}$+k为闭函数,则k的取值范围是(  )
A.(-1,-$\frac{1}{2}$]B.(-∞,1)C.[$\frac{1}{2}$,1)D.(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列四个命题中是真命题的是(  )
A.“?x∈R,x2-4x+1>0”的否定是“?x∈R,x2-4x+1<0”
B.若x≥5,y≥6,则x+y≥11的逆否命题是假命题
C.“x>1”是“$\frac{1}{x}<1$”的充要条件
D.已知α,β为两个不同的平面,m为α内的一条直线,则“α⊥β”是“m⊥β”的必要不充分条件

查看答案和解析>>

同步练习册答案