分析 (Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(Ⅱ)问题转化为x∈(0,$\frac{1}{3}$),a>2-$\frac{2lnx}{x-1}$恒成立,令h(x)=2-$\frac{2lnx}{x-1}$,x∈(0,$\frac{1}{3}$),根据函数的单调性求出h(x)的最大值,从而求出a的范围即可.
解答 解:(Ⅰ)当a=1时,f(x)=x-1-2lnx,则f′(x)=1-$\frac{2}{x}$,
由f′(x)>0,得x>2,由f′(x)<0,得0<x<2,
故f(x)的单调减区间为(0,2],单调增区间为[2,+∞);
(Ⅱ)因为f(x)<0在区间(0,$\frac{1}{3}$)上恒成立不可能,
故要使函数f(x)在(0,$\frac{1}{3}$)上无零点,
只要对任意的x∈(0,$\frac{1}{3}$),f(x)>0恒成立,
即对x∈(0,$\frac{1}{3}$),a>2-$\frac{2lnx}{x-1}$恒成立.
令h(x)=2-$\frac{2lnx}{x-1}$,x∈(0,$\frac{1}{3}$),
则h′(x)=$\frac{2lnx+\frac{2}{x}-2}{{(x-1)}^{2}}$,
再令m(x)=2lnx+$\frac{2}{x}$-2,x∈(0,$\frac{1}{3}$),
则m′(x)=$\frac{-2(1-x)}{{x}^{2}}$<0,
故m(x)在(0,$\frac{1}{3}$)上为减函数,
于是,m(x)>m($\frac{1}{3}$)=4-3ln3>0,
从而h′(x)>0,于是h(x)在(0,$\frac{1}{3}$)上为增函数,
所以h(x)<h($\frac{1}{3}$)=2-3ln3,
∴a的取值范围为[2-3ln3,+∞).
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2π}{5}$ | B. | $\frac{3π}{5}$ | C. | $\frac{4π}{5}$ | D. | π |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com