精英家教网 > 高中数学 > 题目详情
已知命题p:a≠1或b≠2,命题q:a+b≠3,则p是q的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:根据充分必要条件的定义集合不等式的性质从而得到答案.
解答: 解:∵命题q:a+b≠3,命题p:a≠1或b≠2,
¬p:a=1且b=2,¬q:a+b=3,
∴¬p⇒¬q,反之不成立,例如a=
1
2
,b=
5
2

因此命题q是p的充分不必要条件.
故选:B.
点评:本题考查了命题之间的关系、充分必要条件的判定,考查了推理能力和计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

据专家估算,我国每年在餐桌上浪费的食物约2000亿元,相当于2亿多人一年的口粮.你是否为“光盘族”?围绕此主题,在某城市广场随机调查了50位中年人和老年人,根据他们对此问题的回答得到下面的2×2列联表:
老年人中年人合计
非“光盘族”23032
“光盘族”81018
合计104050
(1)由以上统计的2×2列联表分析能否有99.5%的把握认为“是光盘族与年龄层次有关”,说明你的理由;
下面的临界值表供参考:
k02.0722.7063.8415.0246.6357.87910.828
P( K2≥k00.150.100.050.0250.0100.0050.001
参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,n=a+b+c+d.
(2)若参加此次调查的50人中,甲、乙等6人恰为粮食局的工作人员,现在要从这6人中,随机选出2人统计调查结果,求甲、乙两人至少有1人入选的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

某种波的传播是由曲线f(x)=Asin(ωx+φ)(A>0)来实现的,我们把函数解析式f(x)=Asin(ωx+φ)称为“波”,把振幅都是A 的波称为“A 类波”,把两个解析式相加称为波的叠加.
(1)已知“1 类波”中的两个波f1(x)=sin(x+φ1)与f2(x)=sin(x+φ2)叠加后仍是“1类波”,求φ21的值;
(2)在“A 类波“中有一个是f1(x)=Asinx,从 A类波中再找出两个不同的波f2(x),f3(x),使得这三个不同的波叠加之后是平波,即叠加后f1(x)+f2(x)+f3(x),并说明理由.
(3)在n(n∈N,n≥2)个“A类波”的情况下对(2)进行推广,使得(2)是推广后命题的一个特例.只需写出推广的结论,而不需证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的(  )
A、必要不充分条件
B、充分不必要条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|z1|=|z2|=1,z1+z2=
1
2
+
3
2
i,求复数z1、z2及|z1-z2|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一次函数y=x+k(k∈Z)的图象与二次函数y=x2的图象交于A,B两点,O为坐标原点,求:
(1)
OA
OB
的数量积;
(2)当k为何值时
OA
OB

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,单位圆上的A、B两点分别在第一、四象限,已知A、B两点的纵坐标分别为
7
2
10
,-
5
5

(1)求tan∠AOB的值;
(2)设点A关于直线OB的对称点为C,求C点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,在(-1,1)内有零点且单调递增的是(  )
A、y=log2x
B、y=2x-1
C、y=x2-2
D、y=-x3

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=2sin(
πx
6
-
π
3
)(0≤x≤9)的最大值为a,最小值为b,求a-b的值.

查看答案和解析>>

同步练习册答案