精英家教网 > 高中数学 > 题目详情
9.设f0(x)=sinx,fn(x)=fn-1′(x),n∈N+,则f2010(x)=(  )
A.sinxB.-sinxC.cosxD.-cosx

分析 根据题意和求导公式依次求函数的导数,归纳出规律:周期性,即可求出f2010(x).

解答 解:由题意得,f0(x)=sinx,fn(x)=fn-1′(x),n∈N+
则f1(x)=f0′(x)=cosx,f2(x)=f1′(x)=-sinx,
f3(x)=f2′(x)=-cosx,f4(x)=f3′(x)=sinx,…,
所以导函数具有周期性,且周期是4,
则f2010(x)=f2(x)=-sinx,
故选:B.

点评 本题考查导数的运算,以及周期性的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年河北邢台市高一上学期月考一数学试卷(解析版) 题型:解答题

已知函数

(1)求并判断函数的奇偶性;

(2)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.平面直角坐标系xOy中,过椭圆M:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)过右焦点的直线$x+y-\sqrt{3}=0$交M于A,B两点,P为AB的中点,且OP的斜率为$\frac{1}{2}$.
(1)求椭圆M的方程;
(2)若C,D为椭圆M上的两点,且CD⊥AB,求|CD|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知O为坐标原点,椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的短轴长为2,F为其右焦点,P为椭圆上一点,且PF与x轴垂直,$\overrightarrow{OF}•\overrightarrow{OP}=3$.
(1)求椭圆C的方程;
(2)直线l与椭圆C交于不同的两点A、B,若以AB为直径的圆恒过原点O,求|AB|弦长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若双曲线$\frac{{x}^{2}}{8}$-y2=1过椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点,且它们的离心率互为倒数.
(I)求椭圆C的标准方程;
(Ⅱ)如图,椭圆C的左、右顶点分别为A1,A2点M(1,0)的直线l与椭圆C交于P、Q两点,设直线A1P与A2Q的斜率别为k1,k2试问,是否存在实数m,使得k1+mk2=0?若存在,求m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设变量x,y满足约束条件$\left\{\begin{array}{l}{2x-y-7≥0}\\{x+y-8≥0}\\{x-2y-2≤0}\end{array}\right.$,则目标函数z=x2+y2的最小值为(  )
A.32B.17C.40D.34

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=sin(2x+$\frac{π}{3}$)与g(x)的图象关于直线x=$\frac{π}{6}$对称,将g(x)的图象向左平移φ(φ>0)个单位后与f(x)的图象重合,则φ的最小值为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.双曲线2x2+ky2=k(k≠0)的一条渐近线是y=x,则实数k的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某设备的使用年限x(单位:年)与所支付的维修费用y(单位:千元)的一组数据如表:
使用年限x2345
维修费用y23.456.6
从散点图分析.y与x线性相关,根据上表中数据可得其线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中的$\widehat{b}$=1.54.由此预测该设备的使用年限为6年时需支付的维修费用约是(  )
A.7.2千元B.7.8千元C.8.1千元D.9.5千元

查看答案和解析>>

同步练习册答案