精英家教网 > 高中数学 > 题目详情
1.已知$\overrightarrow{a}$=(3,4),$\overrightarrow{b}$=(6,m),且$\overrightarrow{a}$$∥\overrightarrow{b}$,求m.

分析 根据题意,由$\overrightarrow{a}$、$\overrightarrow{b}$的坐标,结合平行向量的坐标表示可得3m=4×6,解可得m的值,即可得答案.

解答 解:根据题意,$\overrightarrow{a}$=(3,4),$\overrightarrow{b}$=(6,m),且$\overrightarrow{a}$$∥\overrightarrow{b}$,
则有3m=4×6,
解可得m=8,
故答案为:8.

点评 本题考查向量平行的坐标表示,关键是理解平面向量坐标的意义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x2-2|x-a|(a∈R).
(I)当a=0时,求方程f(x)=0的根;
(Ⅱ)当a>0时,若对任意的x∈[0,+∞),不等式f(x-1)≥2f(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知正项数列{an}的前n项为Sn,且4Sn=(an+1)2
(1)计算:a1,a2,a3
(2)证明:数列{an}为等差数列,并求其通项公式an
(3)对任意正整数n均有不等式$\frac{{S}_{{a}_{n}}+{S}_{{a}_{n+1}}}{2}$≥λ${S}_{\frac{{a}_{n}+{a}_{n+1}}{2}}$恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设O是坐标原点,椭圆C:x2+3y2=6的左右焦点分别为F1,F2,且P,Q是椭圆C上不同的两点,
(I)若直线PQ过椭圆C的右焦点F2,且倾斜角为30°,求证:|F1P|、|PQ|、|QF1|成等差数列;
(Ⅱ)若P,Q两点使得直线OP,PQ,QO的斜率均存在.且成等比数列.求直线PQ的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在平面直角坐标系中,给定两点A(0,1),B(2,-1),若M(-1,m),满足$\overrightarrow{AM}$$•\overrightarrow{BM}$=6,则m的值为:±2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.△ABC中,角A,B,C所对的边分别为a,b,c,若B=60°,b=1,求a+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知角α的终边经过点P(3,4t),且sin(2kπ+α)=-$\frac{3}{5}$(k∈Z),则t=-$\frac{9}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.化简下列各式.
(1)(a-1+b-1)(a-2-a-1b-1+b-2);
(2)$\frac{a-b}{{a}^{\frac{1}{3}}{-}{b^{\frac{1}{3}}}}$-$\frac{a+b}{{a}^{\frac{1}{3}}{+}{b^{\frac{1}{3}}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=2sin(ωx+$\frac{π}{4}$)(ω>0)与函数g(x)=cos(2x+φ)(|φ|<$\frac{π}{2}$)的对称轴完全相同,则φ=(  )
A.-$\frac{π}{4}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.-$\frac{π}{2}$

查看答案和解析>>

同步练习册答案