| A. | -$\frac{π}{4}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{2}$ | D. | -$\frac{π}{2}$ |
分析 由条件利用三角函数的周期性求得ω的值,再根据三角函数的图象的对称性求得φ的值.,
解答 解:∵函数f(x)=2sin(ωx+$\frac{π}{4}$)(ω>0)与函数g(x)=cos(2x+φ)(|φ|<$\frac{π}{2}$)的对称轴完全相同,
故它们的周期相同,即$\frac{2π}{ω}$=$\frac{2π}{2}$,∴ω=2.
故函数f(x)=2sin(2x+$\frac{π}{4}$)(ω>0),函数g(x)=cos(2x+φ)(|φ|<$\frac{π}{2}$).
令2x+$\frac{π}{4}$=kπ+$\frac{π}{2}$,求得x=$\frac{kπ}{2}$+$\frac{π}{8}$,可得f(x)的图象的对称轴为x=$\frac{kπ}{2}$+$\frac{π}{8}$,k∈Z.
令2x+$\frac{φ}{2}$=kπ,求得x=$\frac{kπ}{2}$-$\frac{φ}{2}$,可得f(x)的图象的对称轴为x=$\frac{kπ}{2}$-$\frac{φ}{2}$,k∈Z.
故有-$\frac{φ}{2}$=$\frac{π}{8}$,∴φ=-$\frac{π}{4}$,
故选:A.
点评 本题主要考查三角函数的周期性以及它们的图象的对称性,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com