精英家教网 > 高中数学 > 题目详情
6.△ABC中,角A,B,C所对的边分别为a,b,c,若B=60°,b=1,求a+c的取值范围.

分析 使用正弦定理用sinA,sinC表示出a,c,得出a+c关于A的三角函数,根据A的范围和正弦函数的性质得出a+c的最值.

解答 解:由正弦定理得$\frac{a}{sinA}=\frac{c}{sinC}=\frac{b}{sinB}=\frac{1}{sin60°}$=$\frac{2\sqrt{3}}{3}$.
∴a=$\frac{2\sqrt{3}}{3}sinA$,c=$\frac{2\sqrt{3}}{3}sinC$=$\frac{2\sqrt{3}}{3}sin(\frac{2π}{3}-A)$.
∴a+c=$\frac{2\sqrt{3}}{3}$sinA+$\frac{2\sqrt{3}}{3}sin(\frac{2π}{3}-A)$=$\frac{2\sqrt{3}}{3}$($\frac{3}{2}sinA$+$\frac{\sqrt{3}}{2}cosA$)=2sin(A+$\frac{π}{6}$).
∵0<A<$\frac{2π}{3}$,∴$\frac{π}{6}$<A+$\frac{π}{6}$<$\frac{5π}{6}$.
∴$\frac{1}{2}<$sin(A+$\frac{π}{6}$)≤1.∴1<2sin(A+$\frac{π}{6}$)≤2.
∴a+c的取值范围是(1,2].

点评 本题考查了正弦定理得应用,两角和差的三角函数,正弦函数的图象与性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.在△ABC中,内角A,B,C所对的边分别为a,b,c,若cos2B+cosB=1-cosAcosC,则(  )
A.a、b、c 成等差数列B.a、b、c成等比数列
C.a、2b、3c 成等差数列D.a、2b、3c成等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.将函数g(x)=$\frac{1}{4|x|}$的图象向左平移1个单位,所得函数h(x)的图象与f(x)=x2(x+2)2的图象有六个不同的交点,则这六个交点的横坐标之和等于(  )
A.-8B.-4C.-6D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.实数集{0,1,x2-x}中,x不能取得的值为:0,1,$\frac{1-\sqrt{5}}{2}$,$\frac{1+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知$\overrightarrow{a}$=(3,4),$\overrightarrow{b}$=(6,m),且$\overrightarrow{a}$$∥\overrightarrow{b}$,求m.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若${C}_{n}^{m-1}$:C${\;}_{n}^{m}$:C${\;}_{n}^{m+1}$=3:4:5,则n-m=159.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知θ为第三象限角,且终边上一点P(-2,x),且sinθ=$\frac{\sqrt{2}}{4}$x,则tanθ=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若x∈[-2,2],求函数f(x)=$\frac{{x}^{2}-1}{{x}^{2}+1}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.(文科)某校女子篮球队7名运动员身高(单位:厘米)分布的茎叶图如图,已知记录的平均身高为175cm,但记录中有一名运动员身高的末位数字不清晰,如果把其末尾数记为x,那么x的值为2.

查看答案和解析>>

同步练习册答案