精英家教网 > 高中数学 > 题目详情
17.将函数g(x)=$\frac{1}{4|x|}$的图象向左平移1个单位,所得函数h(x)的图象与f(x)=x2(x+2)2的图象有六个不同的交点,则这六个交点的横坐标之和等于(  )
A.-8B.-4C.-6D.-3

分析 分别求出函数h(x)与f(x)的对称轴都为x=-1,根据函数的对称性即可求出答案.

解答 解:g(x)=$\frac{1}{4|x|}$的图象向左平移1个单位,所得函数h(x)=$\frac{1}{4|x+1|}$,
其对称轴为x=-1,如图所示:
f(x)=x2(x+2)2的图象的对称轴为x=-1,
所以h(x)的图象与f(x)图象有六个不同的交点,关于x=-1对称,
所以六个交点的横坐标之和为3×(-2)=-6,
故选:C.

点评 本题考查了函数图象的性质,关键是求出函数的对称轴,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知集合A={x∈N|x>2},集合B={x∈N|x<n,n∈N},若A∩B的元素的个数为6,则n等于(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数$f(x)={x^2}(x-\frac{2}{x})$的导函数f′(x),则f′(1)等于(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}满足a1=1,|an+1-an|=$\frac{1}{{2}^{n}}$,且{a2n-1}是递增数列,{a2n}是递减数列,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知正项数列{an}的前n项为Sn,且4Sn=(an+1)2
(1)计算:a1,a2,a3
(2)证明:数列{an}为等差数列,并求其通项公式an
(3)对任意正整数n均有不等式$\frac{{S}_{{a}_{n}}+{S}_{{a}_{n+1}}}{2}$≥λ${S}_{\frac{{a}_{n}+{a}_{n+1}}{2}}$恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设Sn是等差数列{an}的前n项和,若$\frac{{S}_{5}}{{S}_{3}}$=3,则$\frac{{S}_{9}}{{S}_{6}}$=(  )
A.$\frac{2}{3}$B.$\frac{5}{3}$C.2D.$\frac{51}{22}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设O是坐标原点,椭圆C:x2+3y2=6的左右焦点分别为F1,F2,且P,Q是椭圆C上不同的两点,
(I)若直线PQ过椭圆C的右焦点F2,且倾斜角为30°,求证:|F1P|、|PQ|、|QF1|成等差数列;
(Ⅱ)若P,Q两点使得直线OP,PQ,QO的斜率均存在.且成等比数列.求直线PQ的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.△ABC中,角A,B,C所对的边分别为a,b,c,若B=60°,b=1,求a+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求下列函数的二阶导数:
(1)y=(x3+1)3
(2)y=ex+sinx;
(3)y=xcosx;
(4)y=2x
(5)y=x2lnx;
(6)y=$\frac{x-1}{x+1}$.

查看答案和解析>>

同步练习册答案