分析 由已知的等式记作①,利用同角三角函数间的基本关系列出关系式,记作②,再根据θ为锐角,联立①②求出sinθ和cosθ的值,进而利用二倍角的余弦函数公式及两角和与差的正弦函数公式分别求出所求式子的分子与分母,代入即可求出所求式子的值.
解答 解:由sinθ-cosθ=-$\frac{\sqrt{14}}{4}$,①,
又sin2θ+cos2θ=1②,且θ∈(0,$\frac{π}{4}$),
联立①②解得:sinθ=$\frac{3\sqrt{2}-\sqrt{14}}{8}$,cosθ=$\frac{\sqrt{14}+3\sqrt{2}}{8}$,
∴则$\frac{2co{s}^{2}θ-1}{sin(\frac{π}{4}-θ)}$═$\frac{co{s}^{2}θ-si{n}^{2}θ}{\frac{\sqrt{2}}{2}(cosθ-sinθ)}$
=$\frac{\sqrt{2}(cosθ-sinθ)(cosθ+sinθ)}{cosθ-sinθ}$=$\sqrt{2}(cosθ+sinθ)$
=$\sqrt{2}×(\frac{\sqrt{14}+3\sqrt{2}}{8}+\frac{3\sqrt{2}-\sqrt{14}}{8})$=$\frac{3}{2}$.
点评 本题考查了二倍角的余弦函数公式,两角和与差的正弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | x=$\frac{kπ}{2}$-$\frac{π}{6}$(k∈Z) | B. | x=$\frac{kπ}{2}$+$\frac{π}{6}$(k∈Z) | C. | x=$\frac{kπ}{2}$-$\frac{π}{12}$(k∈Z) | D. | x=$\frac{kπ}{2}$+$\frac{π}{12}$(k∈Z) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=2x+$\frac{1}{{2}^{x}}$ | B. | f(x)=tan$\frac{x}{2}$ | C. | f(x)=x3+x | D. | f(x)=ln$\frac{4-x}{4+x}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p∧q | B. | ¬p∧¬q | C. | ¬p∧q | D. | p∧¬q |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com