精英家教网 > 高中数学 > 题目详情
19.已知命题p:对任意x∈R,总有3x≤0;命题q:“x>2”是“x>4”的充分不必要条件,则下列命题为真命题的是(  )
A.p∧qB.¬p∧¬qC.¬p∧qD.p∧¬q

分析 先判断命题p与q的真假,再利用复合命题真假的判定方法即可判断出结论.

解答 解:对于命题p:对任意x∈R,总有3x>0,因此命题p是假命题;
命题q:“x>2”是“x>4”的必要不充分条件,因此命题q是假命题.
因此命题¬p与¬q都是真命题.
则下列命题为真命题的是(¬p)∧(¬q).
故选:B.

点评 本题考查了复合命题真假的判定方法、指数函数的单调性、不等式的性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.在区间[-5,5]内随机地取出一个数a,则恰好使1是关于x的不等式2x2+ax-a2<0的一个解的概率为(  )
A.0.3B.0.4C.0.6D.0.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某同学用“五点法”画函数f(x)=Asin(?x+φ)(?>0,|φ|<$\frac{π}{2}}$)在某一个周期内的图象时,列表并填入了部分数据,如下表:
?x+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{5π}{12}$$\frac{11π}{12}$
Asin(?x+φ)030-30
(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;
(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象,若y=g(x)图象的一个对称中心($\frac{5π}{12},0}$),求θ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在锐角△ABC中,角A、B、C所对的边分别为a、b、c,且2sin2$\frac{A+C}{2}$+cos2B=1.
(Ⅰ)求角B的大小;
(Ⅱ)若b=2,求y=a+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知θ∈(0,$\frac{π}{4}$),且sinθ-cosθ=-$\frac{\sqrt{14}}{4}$,则$\frac{2co{s}^{2}θ-1}{sin(\frac{π}{4}-θ)}$等于$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知复数z=($\frac{1+i}{1-i}$)2014,则在复平面内z-i所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,已知正方形ABCD的边长为1,沿对角线BD折起得到四面体ABCD,如果 四面体ABCD的主视图是顶角为120°的等腰三角形,俯视图为等腰直角三角形,则其侧视图的面积为(  )
A.$\frac{{\sqrt{3}}}{6}$B.$\frac{{\sqrt{3}}}{12}$C.$\frac{{\sqrt{6}}}{6}$D.$\frac{{\sqrt{6}}}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=ln(ax+b)(a>0且a≠1)是R上的奇函数,则不等式f(x)>alna的解集是(  )
A.(a,+∞)
B.(-∞,a)
C.当a>1时,解集是(a,+∞);当0<a<1时,解集是(-∞,a)
D.当a>1时,解集是(-∞,a);当0<a<1时,解集是(a,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设sin2α=-$\sqrt{3}$cosα,α∈(-$\frac{π}{2}$,0),则tan2α的值是(  )
A.$\sqrt{3}$B.$-\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.$-\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

同步练习册答案