精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=ln(ax+b)(a>0且a≠1)是R上的奇函数,则不等式f(x)>alna的解集是(  )
A.(a,+∞)
B.(-∞,a)
C.当a>1时,解集是(a,+∞);当0<a<1时,解集是(-∞,a)
D.当a>1时,解集是(-∞,a);当0<a<1时,解集是(a,+∞)

分析 利用奇函数的性质可得:f(0)=0,解得b=0.可得f(x)=xlna.则不等式f(x)>alna,即为:(x-a)lna>0.对a分类讨论即可得出.

解答 解:函数f(x)=ln(ax+b)(a>0且a≠1)是R上的奇函数,
∴f(0)=ln(1+b)=0,解得b=0.
∴f(x)=xlna.则不等式f(x)>alna,即为:(x-a)lna>0.
∴不等式转化为$\left\{\begin{array}{l}{a>1}\\{x>a}\end{array}\right.$,或$\left\{\begin{array}{l}{0<a<1}\\{x<a}\end{array}\right.$,
故选:C.

点评 本题考查了函数的奇偶性、不等式的解法,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.袋中有黑球和白球共7个球,已知从中任取2个球都是白球的概率为$\frac{1}{7}$.现有甲、乙两人从袋中轮流摸球(甲先),每次摸出1球且不放回,直到摸出白球为止.则袋中原有白球的个数为3,甲摸到白球而终止的概率为$\frac{22}{35}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知命题p:对任意x∈R,总有3x≤0;命题q:“x>2”是“x>4”的充分不必要条件,则下列命题为真命题的是(  )
A.p∧qB.¬p∧¬qC.¬p∧qD.p∧¬q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若将函数f(x)=x6表示为f(x)=a0+a1(1+x)+a2(1+x)2+…+a6(1+x)6,其中a1,a2,…,a6为实数,则a3等于-20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.定义在R上的增函数y=f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)求f(0);
(2)求证:f(x)为奇函数;
(3)若f(k•3x)+f(3x-9x-4)<0对任意x∈R恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知tanα=$\frac{1}{2}$,tanβ=$\frac{1}{3}$,则tan(α-β)=(  )
A.-1B.$\frac{1}{7}$C.1D.$-\frac{1}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.定义在R上的偶函数f(x)满足f(x)=f(x+2),当x∈[3,4]时,f(x)=2x,则下列不等式中正确的是(  )
A.f(sin$\frac{1}{2}$)<f(cos$\frac{1}{2}$)B.f(sin$\frac{π}{3}$)>f(cos$\frac{π}{3}$)C.f(sin1)<f(cos1)D.f(cos$\frac{3}{2}$)<f(sin$\frac{3}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设a∈Z,且0≤a<13,若512016+a能被13整除,则a=12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在极坐标系中,已知曲线C1:ρ=2cosθ,将曲线C1上的点向左平移一个单位,然后纵坐标不变,横坐标伸长到原来的2倍,得到曲线C,又已知直线l:$\left\{\begin{array}{l}{x=\sqrt{2}+tcos\frac{π}{4}}\\{y=tsin\frac{π}{4}}\end{array}\right.$(t是参数),且直线l与曲线C交于A,B两点.
(1)求曲线C的直角坐标方程,并说明它是什么曲线;
(2)设定点P($\sqrt{2}$,0),求|PA|+|PB|.

查看答案和解析>>

同步练习册答案