精英家教网 > 高中数学 > 题目详情
16.若将函数f(x)=x6表示为f(x)=a0+a1(1+x)+a2(1+x)2+…+a6(1+x)6,其中a1,a2,…,a6为实数,则a3等于-20.

分析 把函数f(x)=x6 =[-1+(1+x)]6 按照二项式定理展开,结合已知条件,求得a3的值.

解答 解:∵函数f(x)=x6 =[-1+(1+x)]6=1-C61•(1+x)+C62•(1+x)2-C63•(1+x)3+…+C66•(1+x)6
又f(x)=a0+a1(1+x)+a2(1+x)2+…a6(1+x)6,其中a0,a1,a2,…,a6为实数,
∴a3=-C63=-20.
故答案为:-20.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.在区间[0,π]上随机取一个数x,则事件“sinx≥|cosx|”发生的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在锐角△ABC中,角A、B、C所对的边分别为a、b、c,且2sin2$\frac{A+C}{2}$+cos2B=1.
(Ⅰ)求角B的大小;
(Ⅱ)若b=2,求y=a+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知复数z=($\frac{1+i}{1-i}$)2014,则在复平面内z-i所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,已知正方形ABCD的边长为1,沿对角线BD折起得到四面体ABCD,如果 四面体ABCD的主视图是顶角为120°的等腰三角形,俯视图为等腰直角三角形,则其侧视图的面积为(  )
A.$\frac{{\sqrt{3}}}{6}$B.$\frac{{\sqrt{3}}}{12}$C.$\frac{{\sqrt{6}}}{6}$D.$\frac{{\sqrt{6}}}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.一个无盖的正方体盒子展开后的平面图如图所示,A、B、C是展开图上的三点,则在正方体盒子中,∠ABC的度数是(  )
A.45°B.30°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=ln(ax+b)(a>0且a≠1)是R上的奇函数,则不等式f(x)>alna的解集是(  )
A.(a,+∞)
B.(-∞,a)
C.当a>1时,解集是(a,+∞);当0<a<1时,解集是(-∞,a)
D.当a>1时,解集是(-∞,a);当0<a<1时,解集是(a,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.某次测验有3个选择题,每个题有A,B,C,D共4个选项,某考生对每个题都有随机选一个选项作为答案,则他第一题不选A和C,且3个题的选项互不相同的概率为$\frac{3}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知圆内接四边形ABCD满足AC=BD,过C点的圆的切线与BA的延长线交于E点.
(1)求证:∠ACE=∠BCD;
(2)若BE=9,CD=1,求BC的长.

查看答案和解析>>

同步练习册答案