精英家教网 > 高中数学 > 题目详情
18.直线y=x与曲线C:$\left\{{\begin{array}{l}{x=3cosθ}\\{y=4sinθ}\end{array}}$(θ为参数,π≤θ≤2π)的交点坐标是$(-\frac{12}{5},-\frac{12}{5})$.

分析 本题由曲线C的参数方程消去参数后,得到其普通方程,再用两方程联列方程组,得到交点坐标,即本题结论.解题时要注意纵坐标的取值范围.

解答 解:由曲线C:$\left\{{\begin{array}{l}{x=3cosθ}\\{y=4sinθ}\end{array}}$(θ为参数,π≤θ≤2π),
得到:$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{16}=1$(y≤0).
由$\left\{\begin{array}{l}{\frac{{x}^{2}}{9}+\frac{{y}^{2}}{16}=1}\\{y=x}\end{array}\right.$,
得到${y}^{2}=\frac{9×16}{25}$,
∵y≤0,
∴$y=-\frac{12}{5}$,
∴$x=-\frac{12}{5}$.
∴直线y=x与曲线C:$\left\{{\begin{array}{l}{x=3cosθ}\\{y=4sinθ}\end{array}}$(θ为参数,π≤θ≤2π)的交点坐标是$({-\frac{12}{5},-\frac{12}{5}})$.
故答案为:$(-\frac{12}{5},-\frac{12}{5})$.

点评 本题考查了将曲线的参数方程转化为普通方程,本题难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知角α的终边落在x轴的正半轴上,则角$\frac{α}{2}$的终边落在(  )
A.x轴正半轴上B.x轴上C.y轴正半轴上D.y轴上

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.为了解某地高中生身高情况,研究小组在该地高中生中随机抽取30名高中生的身高编成如图所示的茎叶图(单位:cm);若身高在175cm以上(包括175cm)定义为“高个子”,身高在175以下(不包括175cm)定义为“非高个子”.
(1)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从5人中选2人,那么至少有一人是“高个子”的概率是多少?
(2)用样本估计总体,把频率作为概率,若从该地所有高中生(人数很多)中选3名,用ξ表示所选3人中“高个子”的人数,试写出ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设递增数列{an}满足a1=0,a2=$\frac{1}{2}$且anan+1-2an+1+1=0(n≥2,n∈N*
(1)证明:数列{$\frac{1}{1-{a}_{n}}$}是等差数列;
(2)设bn=$\frac{1-\sqrt{{a}_{n+1}}}{\sqrt{n}}$,记数列{bn}的前n项和为Sn,使不等式Sn≤$\frac{8}{9}$成立的最大正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,△ABC内接于直径为BC的圆O,过点A作圆O的切线交CB的延长线于点P,∠BAC的平分线分别交BC和圆O于点D、E,若PA=2PB=10.
(1)求证:AC=2AB;
(2)求AD•DE的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={1,2,3},B={Z∈Z|1<x<4},则A∩B=(  )
A.{1}B.{2,4}C.{2,3}D.(1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)=xlnx-ax,g(x)=x3-x+6,若对任意的x∈(0,+∞),2f (x)≤g′(x)+2恒成立,则实数a的取值范围为(  )
A.[-2,-$\frac{1}{3}$]B.[-2,+∞)C.(-∞,-$\frac{1}{3}$]D.(-∞,-2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知双曲线一条渐进线的倾斜角为$\frac{π}{3}$,两准线x=±$\frac{{a}^{2}}{c}$间的距离为1,求双曲线标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,已知PA是圆O的切线,切点为A,直线PO交圆O于B,C两点,AC=1,∠BAP=120°,则圆O的面积为π.

查看答案和解析>>

同步练习册答案